SECTION 26 05 00

BASIC ELECTRICAL REQUIREMENTS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the contract, including General and Supplementary Conditions, Special Conditions and Division 1 specification sections, apply to work of this section.

B. Provide all items, articles, materials, operations or methods listed, mentioned or scheduled on drawings and/or herein, including all labor, materials, equipment and incidentals necessary and required for their completion.

C. The items in this section are supplementary to the requirements set forth in other portions of the specifications as indicated under Item "A" above.

1.2 DRAWINGS

A. The drawings show the location and general arrangement of equipment, electrical systems and related items. They shall be followed as closely as elements of the construction will permit.

B. Examine the drawings of other trades and verify the conditions governing the work on the job site. Arrange work accordingly, providing such fittings, conduit, junction boxes and accessories as may be required to meet such conditions.

C. Deviations from the drawings, with the exception of minor changes in routing and other such incidental changes that do not affect the functioning or serviceability of the systems, shall not be made without the written approval of the Architect/Engineer.

D. The architectural and structural drawings take precedence in all matters pertaining to the building structure, mechanical drawings in all matters pertaining to mechanical trades and electrical drawings in all matters pertaining to electrical trades. Where there are conflicts or differences between the drawings for the various trades, report such conflicts or differences to the Architect/Engineer for resolution.

1.3 INSPECTION OF SITE

A. Visit the site, examine and verify the conditions under which the work must be conducted before submitting proposal.

B. The submitting of a proposal implies that the contractor has visited the site and understands the conditions under which the work must be conducted.

1.4 CONTRACT BREAKDOWN

A. Within two (2) weeks following award of contract, submit to the Architect/Engineer for approval a contract amount breakdown. Breakdown shall be submitted on a form similar to the form available at the Architect/Engineer’s office. All requests for payment shall be based on the approved breakdown.

1.5 TEMPORARY FACILITIES

A. Provide and remove upon completion of the project, in accordance with the general conditions, a complete temporary electrical and telephone service during construction.

1.6 ALTERNATES

A. See Alternate Section and other applicable parts of the specifications.

Project No: 17-522 RFP #19-193
1.7 GUARANTEE
A. Contractor guarantees that the installation is free from defects and agrees to replace or repair, any part of this installation which becomes defective within a period of one year following final acceptance, unless noted otherwise, provided that such failure is due to defects in the equipment, material or installation or to follow the specifications and drawings. File with the Owner any and all guarantees from the equipment manufacturers.

1.8 CODES, PERMITS AND FEES
A. Unless otherwise indicated, all required permits, licenses, inspections, approvals and fees for electrical work shall be secured and paid for by the contractor. All work shall conform to all applicable codes, rules and regulations.
B. Rules of local utility companies shall be complied with. Check with the utility company supplying service to the installation and determine all devices including, but not limited to, all current and potential transformers, meter boxes, C.T. cabinets and meters which will be required and include the cost of all such items in proposal.
C. All work shall be executed in accordance with the rules and regulations set forth in local and state codes. Prepare any detailed drawings or diagrams which may be required by the governing authorities. Where the drawings and/or specifications indicate materials or construction in excess of code requirements, the drawings and/or specifications shall govern.

1.9 STANDARDS OF MATERIAL AND WORKMANSHIP:
A. All materials shall be new. The electrical and physical properties of all materials, and the design, performance characteristics, and methods of construction of all items of equipment, shall be in accordance with the latest issue of the various, applicable Standard Specifications of the following recognized authorities:
 1. A.N.S.I.American National Standards Institute
 2. A.S.T.M.American Society for Testing Materials
 3. I.C.E.A.Insulated Cable Engineers Association
 4. I.E.E.E.Institute of Electrical and Electronics Engineers
 5. N.E.C.National Electrical Code
 6. N.E.M.A.National Electrical Manufacturer's Association
 7. U.L.Underwriters Laboratories, Inc.
B. Perform all work in a first class and workmanlike manner, in accordance with the latest accepted standards and practices for the Trades involved.
C. All equipment of the same or similar systems shall be by the same manufacturer.

1.10 RECORD DRAWINGS
A. Provide complete operating and maintenance instruction manuals covering all electrical equipment herein specified, together with parts lists. All literature shall be furnished in triplicate for Owner and shall be bound in book or ring binder form as directed by Architect/Engineer.
B. The operating and maintenance instructions shall include a brief, general description for all electrical systems including, but not limited to:
C. Routine maintenance procedures.
D. Trouble-shooting procedures.
E. Shop Drawings
F. Any equipment offered as a substitution shall be equal in quality, durability, appearance, amperage, and efficiency through all ranges of operation, shall conform with arrangements and space limitations of the equipment shown on the plans and/or specified, shall be compatible with the other components of the system. All costs to make these items of equipment comply with these requirements including, but not limited to, conduit, wiring, bus work, enclosures and building alterations shall be included in the original bid. Similar equipment shall be by one manufacturer.

1.11 SHOP DRAWINGS/SUBMITTALS
A. All shop drawings shall be submitted in groupings of similar and/or related items (lighting fixtures, switchgear, etc.). Incomplete submittal groupings will be returned unchecked.
B. Submit for approval eight (8) copies of shop drawings for all electrical systems or equipment but not limited to the items listed below. Where items are referred to by symbolic designation on the drawings and specifications, all submittals shall bear the same designation (light fixtures). Refer to other sections of the electrical specifications for additional requirements.
 1. Distribution Switchboards
 2. Panelboards
 3. Disconnect Switches
 4. Lighting Control Switches
 5. Wiring Devices
 6. Lighting Fixtures
 7. Fire Alarm System
 8. Transformers

1.12 MANUFACTURERS LISTED
A. The listing of specific manufacturers does not imply acceptance of their products that do not meet the specified ratings, features and functions. Manufacturers listed are not relieved from meeting these specifications in their entirety.
B. Products in compliance with the specification and manufactured by others not named will be considered only if pre-approved by the Engineer ten (10) days prior to bid date.

1.13 USE OF EQUIPMENT
A. The use of any equipment, or any part thereof for purposes other than testing even with the Owner's consent, shall not be construed to be an acceptance of the work on the part of the Owner, nor be construed to obligate the Owner in any way to accept improper work or defective materials.
B. Do not use Owner's lamps for temporary lighting except as allowed and directed by the Owner. Equip lighting fixtures with new lamps when the project is turned over to the Owner.

PART 2 EXECUTION

2.1 INSTALLATION OF EQUIPMENT
A. Install all equipment in strict accordance with all directions and recommendations furnished by the manufacturer. Where such directions are in conflict with the drawings and specifications, report such conflicts to the Architect/Engineer for resolution.
2.2 COORDINATION
A. Install work to avoid interference with work of other trades including, but not limited to, architectural and mechanical trades. Remove and relocate any work that causes an interference at contractor’s expense. Disputes regarding the cause of an interference will be resolved by the Construction Manager or Architect/Engineer.

2.3 CHASES AND RECESSES
A. Provided by the architectural trades, but the contractor shall be responsible for their accurate location and size.

2.4 CUTTING, PATCHING AND DAMAGE TO OTHER WORK
A. Refer to General Conditions for requirements.
B. All cutting, patching and repair work shall be performed by the contractor through approved, qualified subcontractors. Contractor shall include full cost of same in bid.

2.5 EQUIPMENT FOUNDATION AND SUPPORTS
A. Shall be as required or as shown on plans or specified.
B. Provide concrete bases and supports for floor mounted electrical equipment.
C. Provide concrete house keeping bases 4” above finished floor, with leveling channels, where noted, for floor-mounted equipment.
D. For equipment suspended from ceilings or walls, furnish and install all inserts, rods, structural steel frames, brackets and platforms required.

2.6 EQUIPMENT CONNECTIONS
A. Make connections to equipment, motors, lighting fixtures, and other items included in the work in accordance with the approved shop drawings and rough-in measurements furnished by the manufacturers of the particular equipment furnished. All additional connections not shown on the drawings, but called out by the equipment manufacturer’s shop drawings shall be provided.

2.7 CLEANING
A. All debris shall be removed daily as required to maintain the work area in a neat, orderly condition.
B. Final cleanup shall include, but not be limited to, washing of fixture lenses or louvers, switchboards, substations, motor control centers, panels, etc. Fixture reflectors and lenses or louvers shall be left with no water marks or cleaning streaks.

2.8 PROTECTION AND HANDLING OF EQUIPMENT AND MATERIALS
A. Equipment and materials shall be protected from theft, injury or damage.
B. Protect conduit openings with temporary plugs or caps.
C. Provide adequate storage for all equipment and materials delivered to the job site. Location of the space will be designated by the Construction Manager or Architect/Engineer. Equipment set in place in unprotected areas must be provided with temporary protection.

2.9 NAMEPLATES AND DIRECTORIES
A. Identify switchgear, motor controls, panelboards, safety switches, etc., with manufacturer's nameplate, shop order, where applicable on composite assemblies, and designations used on the Drawings. Nameplates shall be laminated phenolic plastic, beveled edged white with engraved black letters. Except where impractical, letters and numerals shall be a minimum of
1/4 inch high. Nameplates shall be mechanically secured. Pressure sensitive nameplates are not acceptable. Panel directories shall be neatly typed, showing equipment served and location for each breaker or switch with a clear plastic protective cover.

B. For detailed requirements refer to Section 26 0553 IDENTIFICATION FOR ELECTRICAL SYSTEMS.

2.10 EXTRA WORK

A. For any extra electrical work which may be proposed, this Contractor shall furnish to the Construction Manager, an itemized breakdown of the estimated cost of the materials and labor required to complete this work. The Contractor shall proceed only after receiving a written order from the Construction Manager establishing the agreed price and describing the work to be done.

2.11 DRAWINGS AND MEASUREMENTS

A. These Specifications and accompanying Drawings are intended to describe and provide for finished work. They are intended to be cooperative, and what is called for by either shall be as binding as if call for by both. The Contractor will understand that the work herein described shall be complete in every detail.

B. The Drawings are not intended to be scaled for rough-in measurements nor to serve as Shop Drawings. Field measurements necessary for ordering materials and fitting the installation to the building construction and arrangement shall be taken by the Contractor. The Contractor shall check latest Architectural drawings and locate light switches from same where door swings are different from Electrical Drawings.

END OF SECTION
SECTION 26 05 19

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 GENERAL

1.1 SECTION INCLUDES

A. Single conductor building wire.
B. Service entrance cable.
C. Metal-clad cable.
D. Power and control tray cable.
E. Manufactured wiring systems.
F. Wiring connectors.
G. Electrical tape.
H. Heat shrink tubing.
I. Oxide inhibiting compound.
J. Wire pulling lubricant.
K. Cable ties.

1.2 RELATED REQUIREMENTS

A. Section 26 05 13 - Medium-Voltage Cables: Cables and terminations for systems 601 V through 35,000 V.
B. Section 26 05 26 - Grounding and Bonding for Electrical Systems: Additional requirements for grounding conductors and grounding connectors.
C. Section 26 05 53 - Identification for Electrical Systems: Identification products and requirements.

1.3 REFERENCE STANDARDS

Project No: 17-522 RFP #19-193
1.4 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate sizes of raceways, boxes, and equipment enclosures installed under other sections with the actual conductors to be installed, including adjustments for conductor sizes increased for voltage drop.
 2. Coordinate with electrical equipment installed under other sections to provide terminations suitable for use with the conductors to be installed.
 3. Notify Strategic Energy Solutions, Inc. of any conflicts with or deviations from the contract documents. Obtain direction before proceeding with work.

1.5 SUBMITTALS

A. See Division 1 - Administrative Requirements, for submittal procedures.

B. Manufactured Wiring System Shop Drawings: Provide plan views indicating proposed system layout with components identified; indicate branch circuit connections.

C. Design Data: Indicate voltage drop and ampacity calculations for aluminum conductors substituted for copper conductors. Include proposed modifications to raceways, boxes, wiring gutters, enclosures, etc. to accommodate substituted conductors.

D. Project Record Documents: Record actual installed circuiting arrangements. Record actual routing.

E. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
 1. See Division 1 - Product Requirements, for additional provisions.
1.6 QUALITY ASSURANCE
 A. Conform to requirements of NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING
 A. Receive, inspect, handle, and store conductors and cables in accordance with manufacturer's instructions.

1.8 FIELD CONDITIONS
 A. Do not install or otherwise handle thermoplastic-insulated conductors at temperatures lower than 14 degrees F, unless otherwise permitted by manufacturer's instructions. When installation below this temperature is unavoidable, notify Strategic Energy Solutions, Inc. and obtain direction before proceeding with work.

PART 2 PRODUCTS

2.1 CONDUCTOR AND CABLE APPLICATIONS
 A. Do not use conductors and cables for applications other than as permitted by NFPA 70 and product listing.
 B. Provide single conductor building wire installed in suitable raceway unless otherwise indicated, permitted, or required.
 1. Exceptions:
 a. Use manufactured wiring systems for branch circuits where concealed under raised floors.
 b. Use power and control tray cable for installation in cable tray.

2.2 CONDUCTOR AND CABLE GENERAL REQUIREMENTS
 A. Provide products that comply with requirements of NFPA 70.
 B. Provide products listed, classified, and labeled as suitable for the purpose intended.
 C. Unless specifically indicated to be excluded, provide all required conduit, boxes, wiring, connectors, etc. as required for a complete operating system.
 D. Comply with NEMA WC 70.
 E. Thermoplastic-Insulated Conductors and Cables: Listed and labeled as complying with UL 83.
 F. Thermoset-Insulated Conductors and Cables: Listed and labeled as complying with UL 44.
 G. Conductor Material:
 1. Provide copper conductors except where aluminum conductors are specifically indicated or permitted for substitution. Conductor sizes indicated are based on copper unless specifically indicated as aluminum. Conductors designated with the abbreviation "AL" indicate aluminum.
 a. Substitution of aluminum conductors for copper is permitted, when approved by Owner and authority having jurisdiction, only for the following:
 b. Where aluminum conductors are substituted for copper, comply with the following:
 1) Size aluminum conductors to provide, when compared to copper sizes indicated, equivalent or greater ampacity and equivalent or less voltage drop.
 2) Increase size of raceways, boxes, wiring gutters, enclosures, etc. as required to accommodate aluminum conductors.
3) Provide aluminum equipment grounding conductor sized according to NFPA 70.

4) Equip electrical distribution equipment with compression lugs for terminating aluminum conductors.

2. Copper Conductors: Soft drawn annealed, 98 percent conductivity, uncoated copper conductors complying with ASTM B3, ASTM B8, or ASTM B787/B787M unless otherwise indicated.

3. Tinned Copper Conductors: Comply with ASTM B33.

4. Aluminum Conductors (only where specifically indicated or permitted for substitution): AA-8000 series aluminum alloy conductors recognized by ASTM B800 and compact stranded in accordance with ASTM B801 unless otherwise indicated.

H. Minimum Conductor Size:

1. Branch Circuits: 12 AWG.
 a. Exceptions:
 1) 20 A, 120 V circuits longer than 75 feet: 10 AWG, for voltage drop.
 2) 20 A, 120 V circuits longer than 150 feet: 8 AWG, for voltage drop.
 3) 20 A, 277 V circuits longer than 150 feet: 10 AWG, for voltage drop.

2. Control Circuits: 14 AWG.

I. Where conductor size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.

J. Conductor Color Coding:

1. Color code conductors as indicated unless otherwise required by the authority having jurisdiction. Maintain consistent color coding throughout project.

2. Color Coding Method: Integrally colored insulation.

3. Color Code:
 a. 480Y/277 V, 3 Phase, 4 Wire System:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 4) Neutral/Grounded: Gray.
 b. 208Y/120 V, 3 Phase, 4 Wire System:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 4) Neutral/Grounded: White.
 c. Equipment Ground, All Systems: Green.
 d. For control circuits, comply with manufacturer's recommended color code.

2.3 SINGLE CONDUCTOR BUILDING WIRE

A. Manufacturers:
1. Copper Building Wire:
 d. Substitutions: Division 1 - Product Requirements.

2. Aluminum Building Wire (only where specifically indicated or permitted for substitution):
 d. Substitutions: See Division 1 - Product Requirements.

B. Description: Single conductor insulated wire.

C. Conductor Stranding:
 1. Feeders and Branch Circuits:
 b. Size 8 AWG and Larger: Stranded.

D. Insulation Voltage Rating: 600 V.

E. Insulation:
 1. Copper Building Wire: Type THHN/THWN or THHN/THWN-2, except as indicated below.
 a. Size 4 AWG and Larger: Type XHHW-2.
 c. Fixture Wiring Within Luminaires: Type TFFN/TFN for luminaires with labeled maximum temperature of 90 degrees C; Approved suitable type for luminaires with labeled maximum temperature greater than 90 degrees C.
 2. Aluminum Building Wire (only where specifically indicated or permitted for substitution): Type XHHW-2.

2.4 POWER AND CONTROL TRAY CABLE

A. Manufacturers:
 4. Substitutions: Division 1 - Product Requirements.

B. Description: NFPA 70, Type TC cable listed and labeled as complying with UL 1277.

C. Conductor Stranding: Stranded.

D. Insulation Voltage Rating: 600 V.

E. Insulation: Type XHHW or XHHW-2.

F. Jacket: PVC or Chlorinated Polyethylene (CPE).
2.5 MANUFACTURED WIRING SYSTEMS

A. Manufacturers:
 2. Wiremold, a brand of Legrand North America, Inc: www.legrand.us.
 3. Substitutions: See Division 1 - Product Requirements.

B. Description: Manufactured wiring assemblies complying with NFPA 70 Article 604, and listed and labeled as complying with UL 183.

C. Provide components necessary to transition between manufactured wiring system and other wiring methods.

D. Branch Circuit Cables:
 2. Insulation Voltage Rating: 600 V.
 3. Insulation: Type THHN.
 5. Armor: Steel, interlocked tape.

E. Connectors: Keyed and color-coded to prevent interconnection of different voltages.

F. Fixture Leads: Type TFN insulation.

2.6 WIRING CONNECTORS

A. Description: Wiring connectors appropriate for the application, suitable for use with the conductors to be connected, and listed as complying with UL 486A-486B or UL 486C as applicable.

B. Connectors for Grounding and Bonding: Comply with Section 26 05 26.

C. Wiring Connectors for Splices and Taps:
 1. Copper Conductors Size 8 AWG and Smaller: Use twist-on insulated spring connectors.
 2. Copper Conductors Size 6 AWG and Larger: Use mechanical connectors or compression connectors.

D. Wiring Connectors for Terminations:
 1. Provide terminal lugs for connecting conductors to equipment furnished with terminations designed for terminal lugs.
 2. Aluminum Conductors: Use compression connectors for all connections.

E. Do not use insulation-piercing or insulation-displacement connectors designed for use with conductors without stripping insulation.

F. Do not use push-in wire connectors as a substitute for twist-on insulated spring connectors.

G. Twist-on Insulated Spring Connectors: Rated 600 V, 221 degrees F for standard applications and 302 degrees F for high temperature applications; pre-filled with sealant and listed as complying with UL 486D for damp and wet locations.

H. Mechanical Connectors: Provide bolted type or set-screw type.

I. Compression Connectors: Provide circumferential type or hex type crimp configuration.
2.7 WIRING ACCESSORIES

A. Electrical Tape:
 1. Vinyl Color Coding Electrical Tape: Integrally colored to match color code indicated; listed as complying with UL 510; minimum thickness of 7 mil; resistant to abrasion, corrosion, and sunlight; suitable for continuous temperature environment up to 221 degrees F.
 2. Vinyl Insulating Electrical Tape: Complying with ASTM D3005 and listed as complying with UL 510; minimum thickness of 7 mil; resistant to abrasion, corrosion, and sunlight; conformable for application down to 0 degrees F and suitable for continuous temperature environment up to 221 degrees F.

B. Heat Shrink Tubing: Heavy-wall, split-resistant, with factory-applied adhesive; rated 600 V; suitable for direct burial applications; listed as complying with UL 486D.

C. Oxide Inhibiting Compound: Listed; suitable for use with the conductors or cables to be installed.

D. Wire Pulling Lubricant: Listed; suitable for use with the conductors or cables to be installed and suitable for use at the installation temperature.

E. Cable Ties: Material and tensile strength rating suitable for application.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that interior of building has been protected from weather.
B. Verify that work likely to damage wire and cable has been completed.
C. Verify that raceways, boxes, and equipment enclosures are installed and are properly sized to accommodate conductors and cables in accordance with NFPA 70.
D. Verify that field measurements are as indicated.
E. Verify that conditions are satisfactory for installation prior to starting work.

3.2 PREPARATION

A. Clean raceways thoroughly to remove foreign materials before installing conductors and cables.

3.3 INSTALLATION

A. Circuiting Requirements:
 1. Unless dimensioned, circuit routing indicated is diagrammatic.
 2. When circuit destination is indicated without specific routing, determine exact routing required.
 3. Arrange circuiting to minimize splices.
 4. Include circuit lengths required to install connected devices within 10 ft of location indicated.
 5. Maintain separation of wiring for emergency systems in accordance with NFPA 70.
 6. Circuiting Adjustments: Unless otherwise indicated, when branch circuits are indicated as separate, combining them together in a single raceway is not permitted.

B. Install products in accordance with manufacturer’s instructions.
C. Perform work in accordance with NECA 1 (general workmanship).
D. Install aluminum conductors in accordance with NECA 104.

E. Install metal-clad cable (Type MC) in accordance with NECA 120.

F. Installation in Raceway:
1. Tape ends of conductors and cables to prevent infiltration of moisture and other contaminants.
2. Pull all conductors and cables together into raceway at same time.
3. Do not damage conductors and cables or exceed manufacturer's recommended maximum pulling tension and sidewall pressure.
4. Use suitable wire pulling lubricant where necessary, except when lubricant is not recommended by the manufacturer.

G. Exposed Cable Installation (only where specifically permitted):
1. Route cables parallel or perpendicular to building structural members and surfaces.
2. Protect cables from physical damage.

H. Installation in Cable Tray: NA.

I. Paralleled Conductors: Install conductors of the same length and terminate in the same manner.

J. Secure and support conductors and cables in accordance with NFPA 70 using suitable supports and methods approved by the authority having jurisdiction. Provide independent support from building structure. Do not provide support from raceways, piping, ductwork, or other systems.

K. Terminate cables using suitable fittings.
1. Metal-Clad Cable (Type MC):
 a. Use listed fittings.
 b. Cut cable armor only using specialized tools to prevent damaging conductors or insulation. Do not use hacksaw or wire cutters to cut armor.

L. Install conductors with a minimum of 12 inches of slack at each outlet.

M. Neatly train and bundle conductors inside boxes, wireways, panelboards and other equipment enclosures.

N. Group or otherwise identify neutral/grounded conductors with associated ungrounded conductors inside enclosures in accordance with NFPA 70.

O. Make wiring connections using specified wiring connectors.
1. Make splices and taps only in accessible boxes. Do not pull splices into raceways or make splices in conduit bodies or wiring gutters.
2. Remove appropriate amount of conductor insulation for making connections without cutting, nicking or damaging conductors.
3. Do not remove conductor strands to facilitate insertion into connector.
4. Clean contact surfaces on conductors and connectors to suitable remove corrosion, oxides, and other contaminates. Do not use wire brush on plated connector surfaces.
5. Connections for Aluminum Conductors: Fill connectors with oxide inhibiting compound where not pre-filled by manufacturer.
6. Mechanical Connectors: Secure connections according to manufacturer's recommended torque settings.
7. Compression Connectors: Secure connections using manufacturer’s recommended tools and dies.

P. Insulate splices and taps that are made with uninsulated connectors using methods suitable for the application, with insulation and mechanical strength at least equivalent to unspliced conductors.

Q. Insulate ends of spare conductors using vinyl insulating electrical tape.

R. Install firestopping to preserve fire resistance rating of partitions and other elements.

S. Unless specifically indicated to be excluded, provide final connections to all equipment and devices, including those furnished by others, as required for a complete operating system.

3.4 FIELD QUALITY CONTROL

A. See Division 1 - Quality Requirements, for additional requirements.

B. Perform inspection, testing, and adjusting in accordance with Section 01 40 00.

C. Inspect and test in accordance with NETA ATS, except Section 4.

D. Perform inspections and tests listed in NETA ATS, Section 7.3.2. The insulation resistance test is required for all conductors. The resistance test for parallel conductors listed as optional is not required.

E. Correct deficiencies and replace damaged or defective conductors and cables.

END OF SECTION
SECTION 26 05 26

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.1 SECTION INCLUDES
A. Grounding and bonding requirements.
B. Conductors for grounding and bonding.
C. Connectors for grounding and bonding.
D. Ground bars.

1.2 RELATED REQUIREMENTS
A. Section 26 05 19 - Low-Voltage Electrical Power Conductors and Cables: Additional requirements for conductors for grounding and bonding, including conductor color coding.
B. Section 26 05 53 - Identification for Electrical Systems: Identification products and requirements.

1.3 REFERENCE STANDARDS
B. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.
E. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
G. UL 467 - Grounding and Bonding Equipment; Current Edition, Including All Revisions.

1.4 ADMINISTRATIVE REQUIREMENTS
A. Coordination:
 1. Verify exact locations of underground metal water service pipe entrances to building.
 2. Coordinate the work with other trades to provide steel reinforcement complying with specified requirements for concrete-encased electrode.
 3. NA.
 4. Notify Strategic Energy Solutions, Inc. of any conflicts with or deviations from the contract documents. Obtain direction before proceeding with work.
B. Sequencing:
 1. Do not install ground rod electrodes until final backfill and compaction is complete.

1.5 SUBMITTALS
A. See Section INFORMATION REQUIRED FROM BIDDERS for submittals procedures.

Project No: 17-522 RFP #19-193
B. Product Data: Provide manufacturer's standard catalog pages and data sheets for grounding and bonding system components.

C. Shop Drawings:

D. Manufacturer's Instructions: Indicate application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, and installation of product.

E. Field quality control test reports.

1.6 QUALITY ASSURANCE

A. Conform to requirements of NFPA 70.

B. Maintain at the project site a copy of each referenced document that prescribes execution requirements.

C. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.

D. Product Listing Organization Qualifications: An organization recognized by OSHA as a Nationally Recognized Testing Laboratory (NRTL) and acceptable to authorities having jurisdiction.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Receive, inspect, handle, and store products in accordance with manufacturer's instructions.

PART 2 PRODUCTS

2.1 GROUNDING AND BONDING REQUIREMENTS

A. Do not use products for applications other than as permitted by NFPA 70 and product listing.

B. Unless specifically indicated to be excluded, provide all required components, conductors, connectors, conduit, boxes, fittings, supports, accessories, etc. as necessary for a complete grounding and bonding system.

C. Where conductor size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.

D. Grounding System Resistance:
 1. Achieve specified grounding system resistance under normally dry conditions unless otherwise approved by Strategic Energy Solutions, Inc. Precipitation within the previous 48 hours does not constitute normally dry conditions.
 2. Grounding Electrode System: Not greater than 5 ohms to ground, when tested according to IEEE 81 using "fall-of-potential" method.
 3. Between Grounding Electrode System and Major Electrical Equipment Frames, System Neutral, and Derived Neutral Points: Not greater than 0.5 ohms, when tested using "point-to-point" methods.

E. Grounding Electrode System:
 1. Provide connection to required and supplemental grounding electrodes indicated to form grounding electrode system.
 a. Provide continuous grounding electrode conductors without splice or joint.
 b. Install grounding electrode conductors in raceway where exposed to physical damage. Bond grounding electrode conductor to metallic raceways at each end with bonding jumper.
2. Metal Underground Water Pipe(s):
 a. Provide connection to underground metal domestic and fire protection (where present) water service pipe(s) that are in direct contact with earth for at least 10 feet at an accessible location not more than 5 feet from the point of entrance to the building.
 b. Provide bonding jumper(s) around insulating joints/pipes as required to make pipe electrically continuous.
 c. Provide bonding jumper around water meter of sufficient length to permit removal of meter without disconnecting jumper.
3. Metal In-Ground Support Structure:
 a. Provide connection to metal in-ground support structure that is in direct contact with earth in accordance with NFPA 70.
4. Concrete-Encased Electrode:
 a. Provide connection to concrete-encased electrode consisting of not less than 20 feet of either steel reinforcing bars or bare copper conductor not smaller than 4 AWG embedded within concrete foundation or footing that is in direct contact with earth in accordance with NFPA 70.
5. Provide additional ground electrode(s) as required to achieve specified grounding electrode system resistance.
6. Ground Bar: Provide ground bar, separate from service equipment enclosure, for common connection point of grounding electrode system bonding jumpers as permitted in NFPA 70. Connect grounding electrode conductor provided for service-supplied system grounding to this ground bar.
 a. Ground Bar Size: 1/4 by 2 by 12 inches unless otherwise indicated or required.
 b. Where ground bar location is not indicated, locate in accessible location as near as possible to service disconnect enclosure.
 c. Ground Bar Mounting Height: 18 inches above finished floor unless otherwise indicated.
8. Ground Riser: Provide common grounding electrode conductor not less than 3/0 AWG for tap connections to multiple separately derived systems as permitted in NFPA 70.
F. Bonding and Equipment Grounding:
 1. Provide bonding for equipment grounding conductors, equipment ground busses, metallic equipment enclosures, metallic raceways and boxes, device grounding terminals, and other normally non-current-carrying conductive materials enclosing electrical conductors/equipment or likely to become energized as indicated and in accordance with NFPA 70.
 2. Provide insulated equipment grounding conductor in each feeder and branch circuit raceway. Do not use raceways as sole equipment grounding conductor.
 3. Where circuit conductor sizes are increased for voltage drop, increase size of equipment grounding conductor proportionally in accordance with NFPA 70.
 4. Unless otherwise indicated, connect wiring device grounding terminal to branch circuit equipment grounding conductor and to outlet box with bonding jumper.
 5. Terminate branch circuit equipment grounding conductors on solidly bonded equipment ground bus only. Do not terminate on neutral (grounded) or isolated/insulated ground bus.
6. Provide bonding jumper across expansion or expansion/deflection fittings provided to accommodate conduit movement.
7. Provide bonding for interior metal air ducts.
8. Provide bonding for metal building frame.
9. Provide bonding for metal siding not effectively bonded through attachment to metal building frame.
10. Provide bonding and equipment grounding for pools and fountains and associated equipment in accordance with NFPA 70.

G. Isolated Ground System:
1. Where isolated ground receptacles or other isolated ground connections are indicated, provide separate isolated/insulated equipment grounding conductors.
2. Connect isolated/insulated equipment grounding conductors only to separate isolated/insulated equipment ground busses.
3. Connect the isolated/insulated equipment grounding conductors to the solidly bonded equipment ground bus only at the service disconnect or separately derived system disconnect. Do not make any other connections between isolated ground system and normal equipment ground system on the load side of this connection.

H. Communications Systems Grounding and Bonding:
1. Provide intersystem bonding termination at service equipment or metering equipment enclosure and at disconnecting means for any additional buildings or structures in accordance with NFPA 70.
2. Provide bonding jumper in raceway from intersystem bonding termination to each communications room or backboard and provide ground bar for termination.
 a. Bonding Jumper Size: 6 AWG, unless otherwise indicated or required.
 b. Raceway Size: 3/4 inch trade size unless otherwise indicated or required.
 c. Ground Bar Size: 1/4 by 2 by 12 inches unless otherwise indicated or required.

2.2 GROUNDING AND BONDING COMPONENTS

A. General Requirements:
1. Provide products listed, classified, and labeled as suitable for the purpose intended.
2. Provide products listed and labeled as complying with UL 467 where applicable.

B. Conductors for Grounding and Bonding, in Addition to Requirements of Section 26 05 26:
1. Use insulated copper conductors unless otherwise indicated.
 a. Exceptions:
 1) Use bare copper conductors where installed underground in direct contact with earth.
 2) Use bare copper conductors where directly encased in concrete (not in raceway).

C. Connectors for Grounding and Bonding:
1. Description: Connectors appropriate for the application and suitable for the conductors and items to be connected; listed and labeled as complying with UL 467.
2. Unless otherwise indicated, use exothermic welded connections for underground, concealed and other inaccessible connections.
3. Unless otherwise indicated, use mechanical connectors, compression connectors, or exothermic welded connections for accessible connections.

D. Ground Bars:
1. Description: Copper rectangular ground bars with mounting brackets and insulators.
2. Size: As indicated.
3. Holes for Connections: As indicated or as required for connections to be made.

PART 3 EXECUTION

3.1 EXAMINATION
A. Verify that work likely to damage grounding and bonding system components has been completed.
B. Verify that field measurements are as indicated.
C. Verify that conditions are satisfactory for installation prior to starting work.

3.2 INSTALLATION
A. Install products in accordance with manufacturer's instructions.
B. Perform work in accordance with NECA 1 (general workmanship).
C. Ground Rod Electrodes: Unless otherwise indicated, install ground rod electrodes vertically. Where encountered rock prohibits vertical installation, install at 45 degree angle or bury horizontally in trench at least 30 inches (750 mm) deep in accordance with NFPA 70 or provide ground plates.
D. Make grounding and bonding connections using specified connectors.
1. Remove appropriate amount of conductor insulation for making connections without cutting, nicking or damaging conductors. Do not remove conductor strands to facilitate insertion into connector.
2. Remove nonconductive paint, enamel, or similar coating at threads, contact points, and contact surfaces.
3. Exothermic Welds: Make connections using molds and weld material suitable for the items to be connected in accordance with manufacturer's recommendations.
4. Mechanical Connectors: Secure connections according to manufacturer's recommended torque settings.
5. Compression Connectors: Secure connections using manufacturer's recommended tools and dies.
E. Identify grounding and bonding system components in accordance with Section 26 05 53.

3.3 FIELD QUALITY CONTROL
A. Inspect and test in accordance with NETA ATS except Section 4.
B. Perform inspections and tests listed in NETA ATS, Section 7.13.
C. Perform ground electrode resistance tests under normally dry conditions. Precipitation within the previous 48 hours does not constitute normally dry conditions.
D. Investigate and correct deficiencies where measured ground resistances do not comply with specified requirements.

END OF SECTION
PART 1 GENERAL

1.1 SECTION INCLUDES
A. Support and attachment components for equipment, conduit, cable, boxes, and other electrical work.

1.2 RELATED REQUIREMENTS
A. NA.
B. NA
C. Section 26 05 34 - Conduit: Additional support and attachment requirements for conduits.
D. NA.
E. Section 26 05 37 - Boxes: Additional support and attachment requirements for boxes.
F. NA.
G. NA.
H. NA.
I. Construction requirements for concrete bases

1.3 REFERENCE STANDARDS
C. MFMA-4 - Metal Framing Standards Publication; 2004.
D. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.
E. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
F. UL 5B - Strut-Type Channel Raceways and Fittings; Current Edition, Including All Revisions.

1.4 ADMINISTRATIVE REQUIREMENTS
A. Coordination:
 1. Coordinate sizes and arrangement of supports and bases with the actual equipment and components to be installed.
 2. Coordinate the work with other trades to provide additional framing and materials required for installation.
 3. Coordinate compatibility of support and attachment components with mounting surfaces at the installed locations.
 4. Coordinate the arrangement of supports with ductwork, piping, equipment and other potential conflicts installed under other sections or by others.
5. Notify Strategic Energy Solutions, Inc. of any conflicts with or deviations from the contract documents. Obtain direction before proceeding with work.

B. Sequencing:
 1. Do not install products on or provide attachment to concrete surfaces until concrete has fully cured.

C. ANSI/TIA/EIA 568 Commercial Building Telecommunications Cabling Standard, current revision level.

D. ANSI/TIA/EIA 569 Commercial Building Standard for Telecommunications Pathways and Spaces, current revision level.

E. ANSI/TIA/EIA 568 Commercial Building Telecommunications Cabling Standard, current revision level.

F. ANSI/TIA/EIA 569 Commercial Building Standard for Telecommunications Pathways and Spaces, current revision level.

1.5 SUMMARY

B. The work covered under this section consists of the furnishing of all necessary labor, supervision, materials, equipment, and services to completely execute the system of conduit hangers and supports as described in this specification.

C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this project, with a minimum structural safety factor of five times the applied force.

1.6 SUBMITTALS
A. See Division 1 - Administrative Requirements, for submittal procedures.

B. Product Data: Provide manufacturer’s standard catalog pages and data sheets for metal channel (strut) framing systems, non-penetrating rooftop supports, and post-installed concrete and masonry anchors.

C. Shop Drawings: Include details for fabricated hangers and supports where materials or methods other than those indicated are proposed for substitution.

D. Evaluation Reports: For products specified as requiring evaluation and recognition by ICC Evaluation Service, LLC (ICC-ES), provide current ICC-ES evaluation reports upon request.

E. Installer’s Qualifications: Include evidence of compliance with specified requirements.

F. Manufacturer’s Instructions: Indicate application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, and installation of product.

1.7 QUALITY ASSURANCE
A. Comply with NFPA 70.

B. Comply with applicable building code.

C. Installer Qualifications for Field-Welding: As specified in Section 05 50 00.

1.8 DELIVERY, STORAGE, AND HANDLING
A. Receive, inspect, handle, and store products in accordance with manufacturer’s instructions.

B. Conduit hangers and supports shall have the manufacturer’s name and part number stamped on the part for identification.
C. Manufacturer: Company specializing in manufacturing products specified in this section with a minimum of five years documented experience in the industry, and certified ISO 9000.

1.9 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

B. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

PART 2 PRODUCTS

2.1 SUPPORT AND ATTACHMENT COMPONENTS

A. General Requirements:

1. Provide all required hangers, supports, anchors, fasteners, fittings, accessories, and hardware as necessary for the complete installation of electrical work.

2. Provide products listed, classified, and labeled as suitable for the purpose intended, where applicable.

3. Where support and attachment component types and sizes are not indicated, select in accordance with manufacturer's application criteria as required for the load to be supported. Include consideration for vibration, equipment operation, and shock loads where applicable.

4. Do not use products for applications other than as permitted by NFPA 70 and product listing.

5. Steel Components: Use corrosion resistant materials suitable for the environment where installed.

 a. Zinc-Plated Steel: Electroplated in accordance with ASTM B633.

 b. Galvanized Steel: Hot-dip galvanized after fabrication in accordance with ASTM A123/A123M or ASTM A153/A153M.

B. Conduit and Cable Supports: Straps, clamps, etc. suitable for the conduit or cable to be supported.

 1. Conduit Straps: One-hole or two-hole type; steel or malleable iron.

 2. Conduit Clamps: Bolted type unless otherwise indicated.

 3. Manufacturers:

C. Outlet Box Supports: Hangers, brackets, etc. suitable for the boxes to be supported.

 1. Manufacturers:

D. Metal Channel (Strut) Framing Systems: Factory-fabricated continuous-slot metal channel (strut) and associated fittings, accessories, and hardware required for field-assembly of supports.
 2. Channel (Strut) Used as Raceway (only where specifically indicated): Listed and labeled as complying with UL 5B.
 3. Manufacturers:
 d. Substitutions: See Division 1 - Product Requirements.
 e. Source Limitations: Furnish channels (struts) and associated fittings, accessories, and hardware produced by a single manufacturer.

E. Hanger Rods: Threaded zinc-plated steel unless otherwise indicated.
 1. Minimum Size, Unless Otherwise Indicated or Required:
 a. Equipment Supports: 1/2 inch diameter.
 b. Single Conduit up to 1 inch (27 mm) trade size: 1/4 inch diameter.

F. Non-Penetrating Rooftop Supports for Low-Slope Roofs: Steel pedestals with thermoplastic or rubber bases that rest on top of roofing membrane, not requiring any attachment to the roof structure and not penetrating the roofing assembly, with support fixtures as specified.
 1. Base Sizes: As required to distribute load sufficiently to prevent indentation of roofing assembly.
 2. Attachment/Support Fixtures: As recommended by manufacturer, same type as indicated for equivalent indoor hangers and supports.
 3. Mounting Height: Provide minimum clearance of 6 inches under supported component to top of roofing.
 4. Manufacturers:

G. Anchors and Fasteners:
 1. Unless otherwise indicated and where not otherwise restricted, use the anchor and fastener types indicated for the specified applications.
 2. Concrete: Use preset concrete inserts, expansion anchors, or screw anchors.
 3. Solid or Grout-Filled Masonry: Use expansion anchors or screw anchors.
 6. Steel: Use beam clamps, machine bolts, or welded threaded studs.
7. Sheet Metal: Use sheet metal screws.
8. Wood: Use wood screws.
9. Preset Concrete Inserts: Continuous metal channel (strut) and spot inserts specifically designed to be cast in concrete ceilings, walls, and floors.
 b. Channel Material: Use galvanized steel.
 c. Manufacturer: Same as manufacturer of metal channel (strut) framing system.
10. Manufacturers - Powder-Actuated Fastening Systems:
H. Power-Strut, Division of Allied Support Systems
I. Hilti Corporation
J. ERICO, International Corporation.
K. Hangers, Supports, Anchors, and Fasteners - General: Protective zinc coating either Electro-Plated (ASTM B633 SCI or SC3), Pre-Galvanized (ASTM a525 coating designation G90) or Hot-Dip Galvanized after fabrication (ASTM A123). The minimum thickness of zinc coating shall be 0.2 mill (5 micrometers).
L. Provide materials of size and type adequate to carry the loads of equipment and conduit, including weight of wire in conduit.
 1. Product: Pre-galvanized strut.
 2. Product: Hilti DX Series
M. Conduit Hangers:
 1. Shall have a vertical load limit of 100 lbs, and a horizontal load limit of 25 lbs.
 2. Shall be available with either a plain hole for 1/4” bolt or a 1/4-20 thread impression.
 3. Shall be available for 3/8” through 2” EMT, rigid, and aluminum conduit.
 4. Shall be available pre-assembled with manufacturer’s specialty fasteners for connection to building structures like beam, flange, drop wire/rod, wood structure, concrete and acoustical tee grid.
N. Wire Rope Hangers:
 1. Wire rope hanger assemblies shall be made of galvanized steel.
 2. Hanger shall meet the fire rating requirements for DIN 4102-2 for 30 minutes at 30 percent of rated load.
 3. Rope hangers shall have a minimum safety factor of 5:1.
 4. Rope hangers are not permitted to support conduits.
 5. Rope hangers are permitted to hang light fixtures, were applicable.
 6. Hangers shall be fully adjustable.
 7. Manufacturer of wire rope hangers shall be:
 a. ERICO, INC., Speed Link series.
PART 3 EXECUTION

3.1 EXAMINATION
A. Verify that field measurements are as indicated.
B. Verify that mounting surfaces are ready to receive support and attachment components.
C. Verify that conditions are satisfactory for installation prior to starting work.

3.2 INSTALLATION
A. Install products in accordance with manufacturer’s instructions.
B. Perform work in accordance with NECA 1 (general workmanship).
C. Provide independent support from building structure. Do not provide support from piping, ductwork, or other systems.
D. Unless specifically indicated or approved by Strategic Energy Solutions, Inc., do not provide support from suspended ceiling support system or ceiling grid.
E. Unless specifically indicated or approved by Strategic Energy Solutions, Inc., do not provide support from roof deck.
F. Do not penetrate or otherwise notch or cut structural members without approval of Structural Engineer.
G. Equipment Support and Attachment:
 1. Use metal fabricated supports or supports assembled from metal channel (strut) to support equipment as required.
 2. Use metal channel (strut) secured to studs to support equipment surface-mounted on hollow stud walls when wall strength is not sufficient to resist pull-out.
 3. Use metal channel (strut) to support surface-mounted equipment in wet or damp locations to provide space between equipment and mounting surface.
 4. Securely fasten floor-mounted equipment. Do not install equipment such that it relies on its own weight for support.
H. Conduit Support and Attachment: .
I. Cable Tray Support and Attachment: .
J. Box Support and Attachment: .
K. Busway Support and Attachment: .
L. Interior Luminaire Support and Attachment: .
M. Preset Concrete Inserts: Use manufacturer provided closure strips to inhibit concrete seepage during concrete pour.
N. Secure fasteners according to manufacturer’s recommended torque settings.
O. Remove temporary supports.

3.3 FIELD QUALITY CONTROL
A. See Division 1 - Quality Requirements, for additional requirements.
B. Inspect support and attachment components for damage and defects.
C. Repair cuts and abrasions in galvanized finishes using zinc-rich paint recommended by manufacturer. Replace components that exhibit signs of corrosion.
D. Correct deficiencies and replace damaged or defective support and attachment components.

E. Mounting and Anchorage of surface-mounted equipment and components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To wood: Fasten with lag screws or through bolts.
2. To new concrete: Bolt to concrete inserts
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4-inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
5. To Steel: Beam clamps (MSS type 19, 21, 23, 25, or 27) complying with MSS SP-69.
6. To light steel: Sheet metal screws.

END OF SECTION
SECTION 26 05 34
CONDUIT

PART 1 GENERAL

1.1 SECTION INCLUDES

A. Galvanized steel rigid metal conduit (RMC).
B. Intermediate metal conduit (IMC).
C. Flexible metal conduit (FMC).
D. Liquidtight flexible metal conduit (LFMC).
E. Electrical metallic tubing (EMT).
F. Rigid polyvinyl chloride (PVC) conduit.
G. Electrical nonmetallic tubing (ENT).
H. Conduit fittings.
I. Conduit, fittings and conduit bodies.

1.2 RELATED REQUIREMENTS

A. Section 26 05 26 - Grounding and Bonding for Electrical Systems.
D. Section 26 05 29 - Hangers and Supports for Electrical Systems.
E. Section 26 05 53 - Identification for Electrical Systems.
F. Section 26 05 37 - Boxes.
G. Section 26 05 53 - Identification for Electrical Systems: Identification products and requirements.
H. Low-Voltage Electrical Service Entrance: Additional requirements for electrical service conduits.
I. NA.

1.3 REFERENCE STANDARDS

A. ANSI C80.1 - American National Standard for Electrical Rigid Steel Conduit (ERSC); 2005.
B. ANSI C80.3 - American National Standard for Steel Electrical Metallic Tubing (EMT); 2005.
C. ANSI C80.6 - American National Standard for Electrical Intermediate Metal Conduit (EIMC); 2005.
D. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.
E. NECA 101 - Standard for Installing Steel Conduits (Rigid, IMC, EMT); 2013.
F. NECA 111 - Standard for Installing Nonmetallic Raceways (RNC, ENT, LFNC); 2003.
G. NEMA FB 1 - Fittings, Cast Metal Boxes, and Conduit Bodies for Conduit, Electrical Metallic Tubing, and Cable; 2012.
H. NEMA TC 2 - Electrical Polyvinyl Chloride (PVC) Conduit; 2013.
I. NEMA TC 3 - Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing; 2015.
J. NEMA TC 13 - Electrical Nonmetallic Tubing (ENT); 2014.

Project No: 17-522 RFP #19-193
K. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

L. UL 1 - Flexible Metal Conduit; Current Edition, Including All Revisions.

M. UL 6 - Electrical Rigid Metal Conduit-Steel; Current Edition, Including All Revisions.

N. UL 360 - Liquid-Tight Flexible Steel Conduit; Current Edition, Including All Revisions.

O. UL 514B - Conduit, Tubing, and Cable Fittings; Current Edition, Including All Revisions.

P. UL 651 - Schedule 40, 80, Type EB and ARigid PVC Conduit and Fittings; Current Edition, Including All Revisions.

Q. UL 797 - Electrical Metallic Tubing-Steel; Current Edition, Including All Revisions.

R. UL 1242 - Electrical Intermediate Metal Conduit-Steel; Current Edition, Including All Revisions.

S. UL 1653 - Electrical Nonmetallic Tubing; Current Edition, Including All Revisions.

1.4 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate minimum sizes of conduits with the actual conductors to be installed, including adjustments for conductor sizes increased for voltage drop.
 2. Coordinate the arrangement of conduits with structural members, ductwork, piping, equipment and other potential conflicts installed under other sections or by others.
 3. Verify exact conduit termination locations required for boxes, enclosures, and equipment installed under other sections or by others.
 4. Coordinate the work with other trades to provide roof penetrations that preserve the integrity of the roofing system and do not void the roof warranty.
 5. Notify Strategic Energy Solutions, Inc. of any conflicts with or deviations from the contract documents. Obtain direction before proceeding with work.

B. Sequencing:
 1. Do not begin installation of conductors and cables until installation of conduit is complete between outlet, junction and splicing points.

1.5 SUBMITTALS

A. See Division 1 - Administrative Requirements for submittals procedures.

B. Product Data: Provide manufacturer's standard catalog pages and data sheets for conduits and fittings.

C. Shop Drawings:
 1. Indicate proposed arrangement for conduits to be installed within structural concrete slabs, where permitted.
 2. Include proposed locations of roof penetrations and proposed methods for sealing.

D. Project Record Documents: Record actual routing for conduits installed underground, conduits embedded within concrete slabs, and conduits 2 inch (53 mm) trade size and larger.

E. Product Data: Provide for metallic conduit, flexible metal conduit, liquidtight flexible metal conduit, metallic tubing, nonmetallic conduit, flexible nonmetallic conduit, nonmetallic tubing, fittings, and conduit bodies.

F. Project Record Documents: Accurately record actual routing of conduits larger than 2 inches.
1.6 QUALITY ASSURANCE
 A. Conform to requirements of NFPA 70.
 B. Products: Listed and classified by Underwriters Laboratories Inc. as suitable for purpose specified and shown.

1.7 DELIVERY, STORAGE, AND HANDLING
 A. Receive, inspect, handle, and store conduit and fittings in accordance with manufacturer's instructions.
 B. Accept conduit on site. Inspect for damage.
 C. Protect conduit from corrosion and entrance of debris by storing above grade. Provide appropriate covering.
 D. Protect PVC conduit from sunlight.

PART 2 PRODUCTS

2.1 CONDUIT APPLICATIONS
 A. Do not use conduit and associated fittings for applications other than as permitted by NFPA 70 and product listing.
 B. Unless otherwise indicated and where not otherwise restricted, use the conduit types indicated for the specified applications. Where more than one listed application applies, comply with the most restrictive requirements. Where conduit type for a particular application is not specified, use galvanized steel rigid metal conduit.
 C. Underground:
 1. Under Slab on Grade: Use galvanized steel rigid metal conduit, intermediate metal conduit (IMC), PVC-coated galvanized steel rigid metal conduit, or rigid PVC conduit.
 2. Where steel conduit is installed in direct contact with earth where soil has a resistivity of less than 2000 ohm-centimeters or is characterized as severely corrosive based on soils report or local experience, use corrosion protection tape to provide supplementary corrosion protection or use PVC-coated galvanized steel rigid metal conduit.
 D. Embedded Within Concrete:
 1. Within Slab Above Ground (within structural slabs only where approved by Structural Engineer): Use galvanized steel rigid metal conduit, intermediate metal conduit (IMC), PVC-coated galvanized steel rigid metal conduit, or rigid PVC conduit.
 2. Concealed Within Masonry Walls: Use galvanized steel rigid metal conduit, intermediate metal conduit (IMC), or electrical metallic tubing (EMT).
 3. Concealed Within Hollow Stud Walls: Use galvanized steel rigid metal conduit, intermediate metal conduit (IMC), or electrical metallic tubing (EMT).
 4. Concealed Below Accessible Floors: Use galvanized steel rigid metal conduit, intermediate metal conduit (IMC), or electrical metallic tubing (EMT).
 E. Exposed, Interior, Not Subject to Physical Damage: Use galvanized steel rigid metal conduit, intermediate metal conduit (IMC), or electrical metallic tubing (EMT).
 F. Connections to Vibrating Equipment:
 1. Dry Locations: Use flexible metal conduit.
 2. Damp, Wet, or Corrosive Locations: Use liquidtight flexible metal conduit.
 3. Maximum Length: 6 feet unless otherwise indicated.
4. Vibrating equipment includes, but is not limited to:
 a. Transformers.
 b. Motors.

2.2 CONDUIT REQUIREMENTS

A. Provide all conduit, fittings, supports, and accessories required for a complete raceway system.
B. Provide products listed, classified, and labeled as suitable for the purpose intended.
C. Minimum Conduit Size, Unless Otherwise Indicated:
 1. Branch Circuits: 1/2 inch (16 mm) trade size.
 2. Branch Circuit Homeruns: 3/4 inch (21 mm) trade size.
 3. Control Circuits: 1/2 inch (16 mm) trade size.
 4. Flexible Connections to Luminaires: 3/8 inch (12 mm) trade size.
D. Where conduit size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.

2.3 GALVANIZED STEEL RIGID METAL CONDUIT (RMC)

A. Description: NFPA 70, Type RMC galvanized steel rigid metal conduit complying with ANSI C80.1 and listed and labeled as complying with UL 6.
B. Fittings:
 1. Non-Hazardous Locations: Use fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.
 2. Material: Use steel or malleable iron.
 3. Connectors and Couplings: Use threaded type fittings only. Threadless set screw and compression (gland) type fittings are not permitted.

2.4 INTERMEDIATE METAL CONDUIT (IMC)

A. Description: NFPA 70, Type IMC galvanized steel intermediate metal conduit complying with ANSI C80.6 and listed and labeled as complying with UL 1242.
B. Fittings:
 1. Non-Hazardous Locations: Use fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.
 2. Material: Use steel or malleable iron.
 3. Connectors and Couplings: Use threaded type fittings only. Threadless set screw and compression (gland) type fittings are not permitted.

2.5 FLEXIBLE METAL CONDUIT (FMC)

A. Description: NFPA 70, Type FMC standard wall steel flexible metal conduit listed and labeled as complying with UL 1, and listed for use in classified firestop systems to be used.
B. Fittings:
 1. Description: Fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.
 2. Material: Use steel or malleable iron.
C. Description: Interlocked steel construction.
D. Fittings: NEMA FB 1.

2.6 LIQUIDTIGHT FLEXIBLE METAL CONDUIT (LFMC)
A. Description: NFPA 70, Type LFMC polyvinyl chloride (PVC) jacketed steel flexible metal conduit listed and labeled as complying with UL 360.
B. Fittings:
 1. Description: Fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.
 2. Material: Use steel or malleable iron.

2.7 ELECTRICAL METALLIC TUBING (EMT)
A. Description: NFPA 70, Type EMT steel electrical metallic tubing complying with ANSI C80.3 and listed and labeled as complying with UL 797.
B. Fittings:
 1. Description: Fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.
 2. Material: Use steel or malleable iron.
 3. Connectors and Couplings: Use compression (gland) or set-screw type.
 a. Do not use indenter type connectors and couplings.
C. Description: ANSI C80.3; galvanized tubing.
D. Fittings and Conduit Bodies: NEMA FB 1; steel or malleable iron compression type.

2.8 RIGID POLYVINYL CHLORIDE (PVC) CONDUIT
A. Description: NFPA 70, Type PVC rigid polyvinyl chloride conduit complying with NEMA TC 2 and listed and labeled as complying with UL 651; Schedule 40 unless otherwise indicated, Schedule 80 where subject to physical damage; rated for use with conductors rated 90 degrees C.
B. Fittings:
 1. Manufacturer: Same as manufacturer of conduit to be connected.
 2. Description: Fittings complying with NEMA TC 3 and listed and labeled as complying with UL 651; material to match conduit.

2.9 ELECTRICAL NONMETALLIC TUBING (ENT)
A. Description: NFPA 70, Type ENT electrical nonmetallic tubing complying with NEMA TC 13 and listed and labeled as complying with UL 1653.
B. Fittings:
 1. Manufacturer: Same as manufacturer of ENT to be connected.
 2. Use solvent-welded type fittings.
 3. Solvent-Welded Fittings: Rigid PVC fittings complying with NEMA TC 3 and listed and labeled as complying with UL 651; suitable for use with ENT.

PART 3 EXECUTION

3.1 EXAMINATION
A. Verify that field measurements are as indicated.

Project No: 17-522 RFP #19-193
B. Verify that mounting surfaces are ready to receive conduits.
C. Verify that conditions are satisfactory for installation prior to starting work.
D. Verify routing and termination locations of conduit prior to rough-in.
E. Conduit routing is shown on drawings in approximate locations unless dimensioned. Route as required to complete wiring system.

3.2 INSTALLATION
A. Install products in accordance with manufacturer's instructions.
B. Perform work in accordance with NECA 1 (general workmanship).
C. Install galvanized steel rigid metal conduit (RMC) in accordance with NECA 101.
D. Install intermediate metal conduit (IMC) in accordance with NECA 101.
E. Install rigid polyvinyl chloride (PVC) conduit in accordance with NECA 111.
F. Install electrical nonmetallic tubing (ENT) in accordance with NECA 111.
G. Conduit Routing:
 1. Unless dimensioned, conduit routing indicated is diagrammatic.
 2. When conduit destination is indicated without specific routing, determine exact routing required.
 3. Conceal all conduits unless specifically indicated to be exposed.
 4. Conduits in the following areas may be exposed, unless otherwise indicated:
 a. Electrical rooms.
 b. Mechanical equipment rooms.
 5. Unless otherwise approved, do not route conduits exposed:
 a. Across floors.
 b. Across roofs.
 c. Across top of parapet walls.
 d. Across building exterior surfaces.
 6. Conduits installed underground or embedded in concrete may be routed in the shortest possible manner unless otherwise indicated. Route all other conduits parallel or perpendicular to building structure and surfaces, following surface contours where practical.
 7. Arrange conduit to maintain adequate headroom, clearances, and access.
 8. Arrange conduit to provide no more than the equivalent of four 90 degree bends between pull points.
 9. Arrange conduit to provide no more than 150 feet between pull points.
 10. Route conduits above water and drain piping where possible.
 11. Arrange conduit to prevent moisture traps. Provide drain fittings at low points and at sealing fittings where moisture may collect.
 12. Maintain minimum clearance of 12 inches between conduits and hot surfaces. This includes, but is not limited to:
 a. Heaters.
b. Hot water piping.

c. Flues.

H. Conduit Support:
1. Secure and support conduits in accordance with NFPA 70 and Section 26 05 29 using suitable supports and methods approved by the authority having jurisdiction.
2. Provide independent support from building structure. Do not provide support from piping, ductwork, or other systems.

I. Connections and Terminations:
1. Use approved zinc-rich paint or conduit joint compound on field-cut threads of galvanized steel conduits prior to making connections.
2. Where two threaded conduits must be joined and neither can be rotated, use three-piece couplings or split couplings. Do not use running threads.
3. Use suitable adapters where required to transition from one type of conduit to another.
4. Provide drip loops for liquidtight flexible conduit connections to prevent drainage of liquid into connectors.
5. Terminate threaded conduits in boxes and enclosures using threaded hubs or double lock nuts for dry locations and raintight hubs for wet locations.
6. Provide insulating bushings or insulated throats at all conduit terminations to protect conductors.
7. Secure joints and connections to provide maximum mechanical strength and electrical continuity.

J. Penetrations:
1. Do not penetrate or otherwise notch or cut structural members, including footings and grade beams, without approval of Structural Engineer.
2. Make penetrations perpendicular to surfaces unless otherwise indicated.
3. Provide sleeves for penetrations as indicated or as required to facilitate installation. Set sleeves flush with exposed surfaces unless otherwise indicated or required.
4. Conceal bends for conduit risers emerging above ground.
5. Seal interior of conduits entering the building from underground at first accessible point to prevent entry of moisture and gases.
6. Where conduits penetrate waterproof membrane, seal as required to maintain integrity of membrane.
7. Make penetrations for roof-mounted equipment within associated equipment openings and curbs where possible to minimize roofing system penetrations. Where penetrations are necessary, seal as indicated or as required to preserve integrity of roofing system and maintain roof warranty. Include proposed locations of penetrations and methods for sealing with submittals.
8. Install firestopping to preserve fire resistance rating of partitions and other elements.

K. Underground Installation:
1. NA.

L. Embedment Within Structural Concrete Slabs (only where approved by Structural Engineer):
1. Secure conduits to prevent floating or movement during pouring of concrete.
M. Concrete Encasement: Where conduits not otherwise embedded within concrete are indicated to be concrete-encased, provide concrete in accordance with Section 03 30 00 with minimum concrete cover of 3 inches on all sides unless otherwise indicated.

N. Conduit Movement Provisions: Where conduits are subject to movement, provide expansion and expansion/deflection fittings to prevent damage to enclosed conductors or connected equipment. This includes, but is not limited to:
 1. Where conduits cross structural joints intended for expansion, contraction, or deflection.
 2. Where conduits are subject to earth movement by settlement or frost.

O. Condensation Prevention: Where conduits cross barriers between areas of potential substantial temperature differential, provide sealing fitting or approved sealing compound at an accessible point near the penetration to prevent condensation. This includes, but is not limited to:
 1. Where conduits pass from outdoors into conditioned interior spaces.
 2. Where conduits pass from unconditioned interior spaces into conditioned interior spaces.

P. Provide grounding and bonding in accordance with Section 26 05 26.

3.3 FIELD QUALITY CONTROL
A. See Division 1 - Quality Requirements, for additional requirements.
B. Repair cuts and abrasions in galvanized finishes using zinc-rich paint recommended by manufacturer. Replace components that exhibit signs of corrosion.
C. Correct deficiencies and replace damaged or defective conduits.

3.4 CLEANING
A. Clean interior of conduits to remove moisture and foreign matter.

3.5 PROTECTION
A. Immediately after installation of conduit, use suitable manufactured plugs to provide protection from entry of moisture and foreign material and do not remove until ready for installation of conductors.

END OF SECTION
SECTION 26 05 37

BOXES

PART 1 GENERAL

1.1 SECTION INCLUDES
A. Outlet and device boxes up to 100 cubic inches, including those used as junction and pull boxes.
B. Cabinets and enclosures, including junction and pull boxes larger than 100 cubic inches.

1.2 RELATED REQUIREMENTS
A. NA.
B. NA.
C. Section 26 05 26 - Grounding and Bonding for Electrical Systems.
D. Section 26 05 29 - Hangers and Supports for Electrical Systems.
E. Section 26 05 34 - Conduit:
 1. Conduit bodies and other fittings.
 2. Additional requirements for locating boxes to limit conduit length and/or number of bends between pulling points.
F. Section 26 05 53 - Identification for Electrical Systems: Identification products and requirements.
G. NA.
H. NA.

1.3 REFERENCE STANDARDS
A. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.
B. NECA 130 - Standard for Installing and Maintaining Wiring Devices; 2010.
C. NEMA FB 1 - Fittings, Cast Metal Boxes, and Conduit Bodies for Conduit, Electrical Metallic Tubing, and Cable; 2012.
D. NEMA OS 1 - Sheet-Steel Outlet Boxes, Device Boxes, Covers, and Box Supports; 2013.
E. NEMA OS 2 - Nonmetallic Outlet Boxes, Device Boxes, Covers and Box Supports; 2013.
F. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum); 2014.
G. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
I. UL 50 - Enclosures for Electrical Equipment, Non-Environmental Considerations; Current Edition, Including All Revisions.
L. UL 514A - Metallic Outlet Boxes; Current Edition, Including All Revisions.

Project No: 17-522 RFP #19-193
1.4 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
 1. Coordinate the work with other trades to avoid placement of ductwork, piping, equipment, or other potential obstructions within the dedicated equipment spaces and working clearances for electrical equipment required by NFPA 70.
 2. Coordinate arrangement of electrical equipment with the dimensions and clearance requirements of the actual equipment to be installed.
 3. Coordinate minimum sizes of boxes with the actual installed arrangement of conductors, clamps, support fittings, and devices, calculated according to NFPA 70.
 4. Coordinate minimum sizes of pull boxes with the actual installed arrangement of connected conduits, calculated according to NFPA 70.
 5. Coordinate the placement of boxes with millwork, furniture, devices, equipment, etc. installed under other sections or by others.
 6. Coordinate the work with other trades to preserve insulation integrity.
 7. Coordinate the work with other trades to provide walls suitable for installation of flush-mounted boxes where indicated.
 8. Notify Strategic Energy Solutions, Inc. of any conflicts with or deviations from the contract documents. Obtain direction before proceeding with work.

1.5 SUBMITTALS

A. See Division 1 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide manufacturer's standard catalog pages and data sheets for cabinets and enclosures, boxes for hazardous (classified) locations, floor boxes, and underground boxes/enclosures.
 1. Underground Boxes/Enclosures: Include reports for load testing in accordance with SCTE 77 certified by a professional engineer or an independent testing agency upon request.
C. Manufacturer's Installation Instructions: Indicate application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, and installation of product.
D. Project Record Documents: Record actual locations for outlet and device boxes, pull boxes, cabinets and enclosures, floor boxes, and underground boxes/enclosures.
E. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
 1. See Division 1 - Product Requirements, for additional provisions.
 2. Keys for Lockable Enclosures: Two of each different key.

1.6 QUALITY ASSURANCE

A. Conform to requirements of NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Receive, inspect, handle, and store products in accordance with manufacturer's instructions.
PART 2 PRODUCTS

2.1 BOXES

A. General Requirements:
 1. Do not use boxes and associated accessories for applications other than as permitted by NFPA 70 and product listing.
 2. Provide all boxes, fittings, supports, and accessories required for a complete raceway system and to accommodate devices and equipment to be installed.
 3. Provide products listed, classified, and labeled as suitable for the purpose intended.
 4. Where box size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.
 5. Provide grounding terminals within boxes where equipment grounding conductors terminate.

B. Outlet and Device Boxes Up to 100 cubic inches, Including Those Used as Junction and Pull Boxes:
 1. Use sheet-steel boxes for dry locations unless otherwise indicated or required.
 2. Use cast iron boxes or cast aluminum boxes for damp or wet locations unless otherwise indicated or required; furnish with compatible weatherproof gasketed covers.
 3. Use suitable concrete type boxes where flush-mounted in concrete.
 4. Use suitable masonry type boxes where flush-mounted in masonry walls.
 5. Use raised covers suitable for the type of wall construction and device configuration where required.
 6. Use shallow boxes where required by the type of wall construction.
 7. Do not use "through-wall" boxes designed for access from both sides of wall.
 8. Sheet-Steel Boxes: Comply with NEMA OS 1, and list and label as complying with UL 514A.
 9. Cast Metal Boxes: Comply with NEMA FB 1, and list and label as complying with UL 514A; furnish with threaded hubs.
 10. Boxes for Supporting Luminaires and Ceiling Fans: Listed as suitable for the type and weight of load to be supported; furnished with fixture stud to accommodate mounting of luminaire where required.
 12. Minimum Box Size, Unless Otherwise Indicated:
 a. Wiring Devices (Other Than Communications Systems Outlets): 4 inch square by 1-1/2 inch deep (100 by 38 mm) trade size.
 b. Communications Systems Outlets: 4 inch square by 2-1/8 inch (100 by 54 mm) trade size.

C. Cabinets and Enclosures, Including Junction and Pull Boxes Larger Than 100 cubic inches:
1. Comply with NEMA 250, and list and label as complying with UL 50 and UL 50E, or UL 508A.

2. NEMA 250 Environment Type, Unless Otherwise Indicated:
 a. Indoor Clean, Dry Locations: Type 1, painted steel.
 b. Outdoor Locations: Type 3R, painted steel.

3. Junction and Pull Boxes Larger Than 100 cubic inches:
 a. Provide screw-cover or hinged-cover enclosures unless otherwise indicated.
 b. Boxes 6 square feet and Larger: Provide sectionalized screw-cover or hinged-cover enclosures.

PART 3 EXECUTION

3.1 EXAMINATION
 A. Verify that field measurements are as indicated.
 B. Verify that mounting surfaces are ready to receive boxes.
 C. Verify that conditions are satisfactory for installation prior to starting work.

3.2 INSTALLATION
 A. Install products in accordance with manufacturer’s instructions.
 B. Install boxes in accordance with NECA 1 (general workmanship) and, where applicable, NECA 130, including mounting heights specified in those standards where mounting heights are not indicated.
 C. Arrange equipment to provide minimum clearances in accordance with manufacturer's instructions and NFPA 70.
 D. Provide separate boxes for emergency power and normal power systems.
 E. Unless otherwise indicated, provide separate boxes for line voltage and low voltage systems.
 F. Flush-mount boxes in finished areas unless specifically indicated to be surface-mounted.
 G. Box Locations:
 1. Locate boxes to be accessible.
 2. Unless dimensioned, box locations indicated are approximate.
 3. Locate boxes as required for devices installed under other sections or by others.
 a. Switches, Receptacles, and Other Wiring Devices:
 b. Communications Systems Outlets.
 4. Locate boxes so that wall plates do not span different building finishes.
 5. Locate boxes so that wall plates do not cross masonry joints.
 6. Unless otherwise indicated, where multiple outlet boxes are installed at the same location at different mounting heights, install along a common vertical center line.
 7. Acoustic-Rated Walls: Do not install flush-mounted boxes on opposite sides of walls back-to-back; provide minimum 24 inches horizontal separation.
 8. Fire Resistance Rated Walls: Install flush-mounted boxes such that the required fire resistance will not be reduced.
a. Do not install flush-mounted boxes with area larger than 16 square inches or such that the total aggregate area of openings exceeds 100 square inches for any 100 square feet of wall area.

9. Locate junction and pull boxes as indicated, as required to facilitate installation of conductors, and to limit conduit length and/or number of bends between pulling points in accordance with Section 26 05 34.

H. Box Supports:
 1. Secure and support boxes in accordance with NFPA 70 and Section 26 05 29 using suitable supports and methods approved by the authority having jurisdiction.
 2. Provide independent support from building structure except for cast metal boxes (other than boxes used for fixture support) supported by threaded conduit connections in accordance with NFPA 70. Do not provide support from piping, ductwork, or other systems.

I. Install boxes plumb and level.

J. Flush-Mounted Boxes:
 1. Install boxes in noncombustible materials such as concrete, tile, gypsum, plaster, etc. so that front edge of box or associated raised cover is not set back from finished surface more than 1/4 inch or does not project beyond finished surface.
 2. Install boxes in combustible materials such as wood so that front edge of box or associated raised cover is flush with finished surface.
 3. Repair rough openings around boxes in noncombustible materials such as concrete, tile, gypsum, plaster, etc. so that there are no gaps or open spaces greater than 1/8 inch at the edge of the box.

K. Install boxes as required to preserve insulation integrity.

L. Metallic Floor Boxes: Install box level at the proper elevation to be flush with finished floor.

M. Install permanent barrier between ganged wiring devices when voltage between adjacent devices exceeds 300 V.

N. Install firestopping to preserve fire resistance rating of partitions and other elements

O. Close unused box openings.

P. Install blank wall plates on junction boxes and on outlet boxes with no devices or equipment installed or designated for future use.

Q. Provide grounding and bonding in accordance with Section 26 05 26.

3.3 CLEANING
 A. Clean interior of boxes to remove dirt, debris, plaster and other foreign material.

3.4 PROTECTION
 A. Immediately after installation, protect boxes from entry of moisture and foreign material until ready for installation of conductors.

 END OF SECTION

Project No: 17-522 RFP #19-193
SECTION 26 05 53
IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.1 SECTION INCLUDES
A. Electrical identification requirements.
B. Identification nameplates and labels.
C. Wire and cable markers.
D. Voltage markers.
E. Warning signs and labels.
F. Field-painted identification of conduit.

1.2 RELATED REQUIREMENTS
A. NA.
B. NA.
C. Section 26 05 19 - Low-Voltage Electrical Power Conductors and Cables: Color coding for power conductors and cables 600 V and less; vinyl color coding electrical tape.
D. NA.
E. NA.
F. NA.

1.3 REFERENCE STANDARDS
C. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
D. NFPA 70E - Standard for Electrical Safety in the Workplace; 2015.

1.4 ADMINISTRATIVE REQUIREMENTS
A. Coordination:
 1. Verify final designations for equipment, systems, and components to be identified prior to fabrication of identification products.
B. Sequencing:
 1. Do not conceal items to be identified, in locations such as above suspended ceilings, until identification products have been installed.
 2. Do not install identification products until final surface finishes and painting are complete.

1.5 SUBMITTALS
A. See Division 1 - Administrative Requirements for submittals procedures.
B. Product Data: Provide catalog data for nameplates, labels, and markers.
C. Manufacturer’s Instructions: Indicate application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation and installation of product.

1.6 QUALITY ASSURANCE
A. Conform to requirements of NFPA 70.

1.7 FIELD CONDITIONS
A. Do not install adhesive products when ambient temperature is lower than recommended by manufacturer.
B. Conform with ANSI A13.1 and ANSI C2.

PART 2 PRODUCTS

2.1 IDENTIFICATION REQUIREMENTS
A. Identification for Equipment:
 1. Use identification nameplate to identify each piece of electrical distribution and control equipment and associated sections, compartments, and components.
 a. Switchgear:
 1) Identify ampere rating.
 2) Identify voltage and phase.
 3) Identify power source and circuit number. Include location when not within sight of equipment.
 4) Use identification nameplate to identify main and tie devices.
 5) Use identification nameplate to identify load(s) served for each branch device. Do not identify spares and spaces.
 b. Switchboards:
 1) Identify ampere rating.
 2) Identify voltage and phase.
 3) Identify power source and circuit number. Include location when not within sight of equipment.
 4) Use identification nameplate to identify main overcurrent protective device.
 5) Use identification nameplate to identify load(s) served for each branch device. Do not identify spares and spaces.
 c. Panelboards:
 1) Identify ampere rating.
 2) Identify voltage and phase.
 3) Identify power source and circuit number. Include location when not within sight of equipment.
 4) Identify main overcurrent protective device. Use identification label for panelboards with a door. For power distribution panelboards without a door, use identification nameplate.
5) Use typewritten circuit directory to identify load(s) served for panelboards with a door. Identify spares and spaces using pencil.

6) For power panelboards without a door, use identification nameplate to identify load(s) served for each branch device. Do not identify spares and spaces.

d. Transformers:
 1) Identify kVA rating.
 2) Identify voltage and phase for primary and secondary.

e. Enclosed switches, circuit breakers, and motor controllers:
 1) Identify voltage and phase.
 2) Identify power source and circuit number. Include location when not within sight of equipment.
 3) Identify load(s) served. Include location when not within sight of equipment.

f. Busway:
 1) Identify ampere rating.
 2) Identify voltage and phase.
 3) Identify power source and circuit number. Include location when not within sight of equipment.
 4) Provide identification at maximum intervals of 40 feet.

g. Transfer Switches:
 1) Identify voltage and phase.
 2) Identify power source and circuit number for both normal power source and standby power source. Include location.
 3) Identify short circuit current rating based on the specific overcurrent protective device type and settings protecting the transfer switch.

2. Service Equipment:
 a. Use identification nameplate to identify each service disconnecting means.

 b. For buildings or structures supplied by more than one service, or any combination of branch circuits, feeders, and services, use identification nameplate or means of identification acceptable to authority having jurisdiction at each service disconnecting means to identify all other services, feeders, and branch circuits supplying that building or structure. Verify format and descriptions with authority having jurisdiction.

 c. Use identification nameplate at each piece of service equipment to identify the available fault current and the date calculations were performed.

3. Emergency System Equipment:
 a. Use identification nameplate or voltage marker to identify emergency system equipment in accordance with NFPA 70.

 b. Use identification nameplate at each piece of service equipment to identify type and location of on-site emergency power sources.

4. Use identification nameplate to identify disconnect location for equipment with remote disconnecting means.

5. Use identification label or handwritten text using indelible marker on inside of door at each fused switch to identify required NEMA fuse class and size.
6. Available Fault Current Documentation: Use identification label to identify the available fault current and date calculations were performed at locations requiring documentation by NFPA 70, including but not limited to the following.
 a. Service equipment.
 b. Industrial control panels.
 c. Motor control centers.
 d. Elevator control panels.
 e. Industrial machinery.

7. Arc Flash Hazard Warning Labels: Use warning labels to identify arc flash hazards for electrical equipment, such as switchboards, panelboards, industrial control panels, meter socket enclosures, and motor control centers that are likely to require examination, adjustment, servicing, or maintenance while energized.
 a. Legend: Include orange header that reads "WARNING", followed by the word message "Arc Flash and Shock Hazard; Appropriate PPE Required; Do not operate controls or open covers without appropriate personal protection equipment; Failure to comply may result in injury or death; Refer to NFPA 70E for minimum PPE requirements" or approved equivalent.
 b. Service Equipment: Include the following information in accordance with NFPA 70.
 1) Nominal system voltage.
 2) Available fault current.
 3) Clearing time of service overcurrent protective device(s).
 4) Date label applied.

8. Use warning signs to identify electrical hazards for entrances to all rooms and other guarded locations that contain exposed live parts operating at 600 V nominal or less with the word message "DANGER; Electrical hazard; Authorized personnel only" or approved equivalent.

B. Identification for Conductors and Cables:
 2. Use identification nameplate or identification label to identify color code for ungrounded and grounded power conductors inside door or enclosure at each piece of feeder or branch-circuit distribution equipment when premises has feeders or branch circuits served by more than one nominal voltage system.

C. Identification for Raceways:
 1. Use voltage markers or color-coded bands to identify systems other than normal power system for accessible conduits at maximum intervals of 20 feet.
 a. Color-Coded Bands: Use field-painting or vinyl color coding electrical tape to mark bands 3 inches wide.
 1) Color Code:
 (a) Emergency Power System: Red.
 (b) Fire Alarm System: Red.
 2) Field-Painting: .
 3) Vinyl Color Coding Electrical Tape: .

D. Identification for Cable Tray: .
E. Identification for Boxes:
 1. Use voltage markers to identify highest voltage present.
 2. Use voltage markers or color coded boxes to identify systems other than normal power system.
 a. Color-Coded Boxes: Field-painted per the same color code used for raceways.

F. Identification for Devices:
 1. Identification for Communications Devices: .
 2. Wiring Device and Wallplate Finishes: .
 3. Use identification label to identify fire alarm system devices.

2.2 IDENTIFICATION NAMEPLATES AND LABELS
A. Identification Nameplates:
 1. Materials:
 a. Indoor Clean, Dry Locations: Use plastic nameplates.
 b. Outdoor Locations: Use plastic, stainless steel, or aluminum nameplates suitable for exterior use.
 2. Plastic Nameplates: Two-layer or three-layer laminated acrylic or electrically non-conductive phenolic with beveled edges; minimum thickness of 1/16 inch; engraved text.
 3. Stainless Steel Nameplates: Minimum thickness of 1/32 inch; engraved or laser-etched text.
 4. Aluminum Nameplates: Anodized; minimum thickness of 1/32 inch; engraved or laser-etched text.
 5. Mounting Holes for Mechanical Fasteners: Two, centered on sides for sizes up to 1 inch high; Four, located at corners for larger sizes.

B. Identification Labels:
 1. Materials: Use self-adhesive laminated plastic labels; UV, chemical, water, heat, and abrasion resistant.
 2. Text: Use factory pre-printed or machine-printed text. Do not use handwritten text unless otherwise indicated.

C. Format for General Information and Operating Instructions:
 1. Minimum Size: 1 inch by 2.5 inches.
 2. Legend: Include information or instructions indicated or as required for proper and safe operation and maintenance.
 3. Text: All capitalized unless otherwise indicated.
 5. Color: Black text on white background unless otherwise indicated.

D. Format for Caution and Warning Messages:
 1. Minimum Size: 2 inches by 4 inches.
 2. Legend: Include information or instructions indicated or as required for proper and safe operation and maintenance.
 3. Text: All capitalized unless otherwise indicated.
 4. Minimum Text Height: 1/2 inch.
5. Color: Black text on yellow background unless otherwise indicated.

E. Nameplates: Engraved three-layer laminated plastic, black letters on white background.

F. Labels: Embossed adhesive tape, with 3/16 inch white letters on black background. Use only for identification of individual wall switches and receptacles, and control device stations.

2.3 WIRE AND CABLE MARKERS

A. Markers for Conductors and Cables: Use wrap-around self-adhesive vinyl cloth, wrap-around self-adhesive vinyl self-laminating, heat-shrink sleeve, plastic sleeve, plastic clip-on, or vinyl split sleeve type markers suitable for the conductor or cable to be identified.

B. Markers for Conductor and Cable Bundles: Use plastic marker tags secured by nylon cable ties.

C. Legend: Power source and circuit number or other designation indicated.

D. Text: Use factory pre-printed or machine-printed text, all capitalized unless otherwise indicated.

E. Minimum Text Height: 1/8 inch.

F. Color: Black text on white background unless otherwise indicated.

G. Description: Vinyl cloth type self-adhesive wire markers.

2.4 VOLTAGE MARKERS

A. Markers for Conduits: Use factory pre-printed self-adhesive vinyl, self-adhesive vinyl cloth, or vinyl snap-around type markers.

B. Markers for Boxes and Equipment Enclosures: Use factory pre-printed self-adhesive vinyl or self-adhesive vinyl cloth type markers.

C. Minimum Size:
 1. Markers for Equipment: 1 1/8 by 4 1/2 inches.
 2. Markers for Conduits: As recommended by manufacturer for conduit size to be identified.
 3. Markers for Pull Boxes: 1 1/8 by 4 1/2 inches.

D. Legend:
 1. Markers for Voltage Identification: Highest voltage present.
 2. Markers for System Identification:
 a. Emergency Power System: Text "EMERGENCY".

E. Color: Black text on orange background unless otherwise indicated.

2.5 WARNING SIGNS AND LABELS

A. Comply with ANSI Z535.2 or ANSI Z535.4 as applicable.

B. Warning Signs:
 1. Materials:
 2. Minimum Size: 7 by 10 inches unless otherwise indicated.

C. Warning Labels:
 1. Materials: Use factory pre-printed or machine-printed self-adhesive polyester or self-adhesive vinyl labels; UV, chemical, water, heat, and abrasion resistant; produced using materials recognized to UL 969.

3. Minimum Size: 2 by 4 inches unless otherwise indicated.

PART 3 EXECUTION

3.1 PREPARATION

A. Clean surfaces to receive adhesive products according to manufacturer's instructions.

B. Degrease and clean surfaces to receive nameplates and labels.

3.2 INSTALLATION

A. Install products in accordance with manufacturer's instructions.

B. Install identification products to be plainly visible for examination, adjustment, servicing, and maintenance. Unless otherwise indicated, locate products as follows:
 3. Free-Standing Equipment: Enclosure front; also enclosure rear for equipment with rear access.
 4. Elevated Equipment: Legible from the floor or working platform.
 5. Branch Devices: Adjacent to device.
 6. Interior Components: Legible from the point of access.
 7. Conduits: Legible from the floor.
 8. Boxes: Outside face of cover.
 9. Conductors and Cables: Legible from the point of access.
 10. Devices: Outside face of cover.

C. Install identification products centered, level, and parallel with lines of item being identified.

D. Secure nameplates to exterior surfaces of enclosures using stainless steel screws and to interior surfaces using self-adhesive backing or epoxy cement.

E. Install self-adhesive labels and markers to achieve maximum adhesion, with no bubbles or wrinkles and edges properly sealed.

F. Mark all handwritten text, where permitted, to be neat and legible.

3.3 FIELD QUALITY CONTROL

A. See Division 1 - Quality Requirements, for additional requirements.

B. Replace self-adhesive labels and markers that exhibit bubbles, wrinkles, curling or other signs of improper adhesion.

END OF SECTION
PART 1 - GENERAL

1.01 SECTION INCLUDES
A. Short-circuit study.
B. Protective device coordination study.
C. Arc flash and shock risk assessment.
 1. Includes arc flash hazard warning labels.
D. Criteria for the selection and adjustment of equipment and associated protective devices not specified in this section, as determined by studies to be performed.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Section 26 0005 - Basic Electrical Requirements.
C. Section 26 0553 - Identification for Electrical Systems: Additional requirements for arc flash hazard warning labels.
D. NA
E. Section 26 2413 - Switchboards.
F. Section 26 2416 - Panelboards.
G. Section 26 2813 - Fuses.
H. NA.

1.03 REFERENCE STANDARDS
H. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
I. NFPA 70E - Standard for Electrical Safety in the Workplace; 2015.

1.04 ADMINISTRATIVE REQUIREMENTS
A. Coordination:
 1. Coordinate the work to provide equipment and associated protective devices complying with criteria for selection and adjustment, as determined by studies to be performed.
 2. Notify Engineer of any conflicts with or deviations from the contract documents. Obtain direction before proceeding with work.
B. Sequencing:
1. Submit study reports prior to or concurrent with product submittals.
2. Do not order equipment until matching study reports and product submittals have both been evaluated by Strategic Energy Solutions, Inc..

1.05 SUBMITTALS
A. Contractor shall provide submittals for equipment listed herein. Refer to Division 01 for submittal procedures.
B. Study reports, stamped or sealed and signed by study preparer.
C. Product Data: In addition to submittal requirements specified in other sections, include manufacturer's standard catalog pages and data sheets for equipment and protective devices indicating information relevant to studies.
 1. Identify modifications made in accordance with studies that:
 a. Can be made at no additional cost to Owner.
 b. As submitted will involve a change to the contract sum.

1.06 POWER SYSTEM STUDIES
A. Scope of Studies:
 1. Perform analysis of new electrical distribution system as indicated on drawings.
 2. Except where study descriptions below indicate exclusions, analyze system at each bus from primary protective devices of utility source down to each piece of equipment involved, including parts of system affecting calculations being performed (e.g. fault current contribution from motors).
 3. Include in analysis alternate sources and operating modes (including known future configurations) to determine worst case conditions.
B. General Study Requirements:
 1. Comply with NFPA 70.
 2. Perform studies utilizing computer software complying with specified requirements; manual calculations are not permitted.
C. Data Collection:
 1. Compile information on project-specific characteristics of actual installed equipment, protective devices, feeders, etc. as necessary to develop single-line diagram of electrical distribution system and associated input data for use in system modeling.
 a. Utility Source Data: Include primary voltage, maximum and minimum three-phase and line-to-ground fault currents, impedance, X/R ratio, and primary protective device information.
 1) Obtain up-to-date information from Utility Company.
 b. Generators: Include manufacturer/model, kW and voltage ratings, and impedance.
 c. Motors: Include manufacturer/model, type (e.g. induction, synchronous), horsepower rating, voltage rating, full load amps, and locked rotor current or NEMA MG 1 code letter designation.
 d. Transformers: Include primary and secondary voltage ratings, kVA rating, winding configuration, percent impedance, and X/R ratio.
 e. Protective Devices:
 1) Circuit Breakers: Include manufacturer/model, type (e.g. thermal magnetic, electronic trip), frame size, trip rating, voltage rating, interrupting rating, available field-adjustable trip response settings, and features (e.g. zone selective interlocking).
 2) Fuses: Include manufacturer/model, type/class (e.g. Class J), size/rating, and speed (e.g. time delay, fast acting).
 f. Protective Relays: Include manufacturer/model, type, settings, current/potential transformer ratio, and associated protective device.
 g. Conductors: Include feeder size, material (e.g. copper, aluminum), insulation type, voltage rating, number per phase, raceway type, and actual length.

D. Short-Circuit Study:

2. For purposes of determining equipment short circuit current ratings, consider conditions that may result in maximum available fault current, including but not limited to:
 a. Maximum utility fault currents.
 b. Maximum motor contribution.
 c. Known operating modes (e.g. utility as source, generator as source, utility/generator in parallel, bus tie breaker open/close positions).

3. For each bus location, calculate the maximum available three-phase bolted symmetrical and asymmetrical fault currents. For grounded systems, also calculate the maximum available line-to-ground bolted fault currents.

E. Protective Device Coordination Study:
1. Comply with applicable portions of IEEE 242 and IEEE 399.
2. Analyze alternate scenarios considering known operating modes (e.g. utility as source, generator as source, utility/generator in parallel, bus tie breaker open/close positions).
3. Analyze protective devices and associated settings for suitable margins between time-current curves to achieve full selective coordination while providing adequate protection for equipment and conductors.

F. Arc Flash and Shock Risk Assessment:
1. Comply with NFPA 70E.
2. Perform incident energy and arc flash boundary calculations in accordance with IEEE 1584 (as referenced in NFPA 70E Annex D), where applicable.
3. Analyze alternate scenarios considering conditions that may result in maximum incident energy, including but not limited to:
 a. Maximum and minimum utility fault currents.
 b. Maximum and minimum motor contribution.
 c. Known operating modes (e.g. utility as source, generator as source, utility/generator in parallel, bus tie breaker open/close positions).

G. Study Reports:
1. General Requirements:
 a. Identify date of study and study preparer.
 b. Identify study methodology and software product(s) used.
 c. Identify scope of studies, assumptions made, implications of possible alternate scenarios, and any exclusions from studies.
 d. Identify base used for per unit values.
 e. Include single-line diagram and associated input data used for studies; identify buses on single-line diagram as referenced in reports, and indicate bus voltage.
 f. Include conclusions and recommendations.
2. Short-Circuit Study:
 a. For each scenario, identify at each bus location:
 1) Calculated maximum available symmetrical and asymmetrical fault currents (both three-phase and line-to-ground where applicable).
 2) Fault point X/R ratio.
 3) Associated equipment short circuit current ratings.
 b. Identify locations where the available fault current exceeds the equipment short circuit current rating, along with recommendations.

3. Protective Device Coordination Study:
 a. For each scenario, include time-current coordination curves plotted on log-log scale graphs.
 b. For each graph include (where applicable):
 1) Partial single-line diagram identifying the portion of the system illustrated.
 2) Protective Devices: Time-current curves with applicable tolerance bands for each protective device in series back to the source, plotted up to the maximum available fault current at the associated bus.
3) Conductors: Damage curves.
4) Transformers: Inrush points and damage curves.
5) Generators: Full load current, overload curves, decrement curves, and short circuit withstand points.
6) Motors: Full load current, starting curves, and damage curves.
7) Capacitors: Full load current and damage curves.
c. For each protective device, identify fixed and adjustable characteristics with available ranges and recommended settings.
 1) Circuit Breakers: Include long time pickup and delay, short time pickup and delay, and instantaneous pickup.
 2) Include ground fault pickup and delay.
 3) Include fuse ratings.
 4) Protective Relays: Include current/potential transformer ratios, tap, time dial, and instantaneous pickup.
d. Identify cases where either full selective coordination or adequate protection is not achieved, along with recommendations.

4. Arc Flash and Shock Risk Assessment:
 a. For each scenario, identify at each bus location:
 1) Calculated incident energy and associated working distance.
 2) Calculated arc flash boundary.
 3) Bolted fault current.
 4) Arcing fault current.
 5) Clearing time.
 6) Arc gap distance.
 b. For purposes of producing arc flash hazard warning labels, summarize the maximum incident energy and associated data reflecting the worst case condition of all scenarios at each bus location.
 c. Identify locations where the calculated maximum incident energy exceeds 40 calories per sq cm.

1.07 QUALITY ASSURANCE
 A. Study Preparer Qualifications: Professional electrical engineer licensed in LOCATION and with minimum five years experience in the preparation of studies of similar type and complexity using specified computer software.
 B. Computer Software for Study Preparation: Use the latest edition of commercially available software utilizing specified methodologies.

PART 2 - PRODUCTS
2.01 ARC FLASH HAZARD WARNING LABELS
 A. Provide warning labels complying with ANSI Z535.4 to identify arc flash hazards for each work location analyzed by the arc flash and shock risk assessment.
 1. Materials: Comply with Section 26 0553.
 2. Legend: Provide custom legend in accordance with NFPA 70E based on equipment-specific data as determined by arc flash and shock risk assessment.
 a. Include the following information:
 1) Arc flash boundary.
 2) Available incident energy and corresponding working distance.
 3) Nominal system voltage.

PART 3 - EXECUTION
3.01 INSTALLATION
 A. Install arc flash warning labels in accordance with Section 26 0553.
3.02 FIELD QUALITY CONTROL

A. Provide the services of field testing agency or equipment manufacturer's representative to perform inspection, testing, and adjusting.

B. Inspect and test in accordance with NETA ATS, except Section 4.

C. Adjust equipment and protective devices for compliance with studies and recommended settings.

D. Notify Engineer of any conflicts with or deviations from studies. Obtain direction before proceeding.

END OF SECTION
PART 1 GENERAL

1.1 SECTION INCLUDES
A. General purpose transformers.

1.2 RELATED REQUIREMENTS
A. Section 03 30 00 - Cast-in-Place Concrete: Concrete equipment pads.
B. Section 26 05 26 - Grounding and Bonding for Electrical Systems.
C. Section 26 05 34 - Conduit: Flexible conduit connections.
D. Section 26 05 53 - Identification for Electrical Systems: Identification products and requirements.
E. Section 26 24 16 - Panelboards.

1.3 REFERENCE STANDARDS
B. IEEE C57.94 - IEEE Recommended Practice for Installation, Application, Operation, and Maintenance of Dry-Type General Purpose Distribution and Power Transformers; 1982 (R2006).
C. IEEE C57.96 - Guide for Loading Dry-Type Distribution and Power Transformers; 2013.
D. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.
E. NECA 409 - Standard for Installing and Maintaining Dry-Type Transformers; 2009.
F. NEMA ST 20 - Dry-Type Transformers for General Applications; 2014.
G. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum); 2014.
K. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
M. UL 1561 - Standard for Dry-Type General Purpose and Power Transformers; Current Edition, Including All Revisions.

1.4 ADMINISTRATIVE REQUIREMENTS
A. Coordination: Coordinate the work with placement of support framing and anchors required for mounting of transformers.

1.5 SUBMITTALS
A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Product Data: Include voltage, kVA, impedance, tap configurations, insulation system class and rated temperature rise, efficiency, sound level, enclosure ratings, outline and support point dimensions, weight, required clearances, service condition requirements, and installed features.
 1. Vibration Isolators: Include attachment method and rated load and deflection.
C. Shop Drawings: Provide dimensioned plan and elevation views of transformers and adjacent equipment with all required clearances indicated.
D. Project Record Documents: Record actual locations of transformers.

1.6 QUALITY ASSURANCE
A. Conform to requirements of NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING
A. Store in a clean, dry space. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from dirt, water, construction debris, and traffic.
B. Handle in accordance with manufacturer's written instructions. Lift only with lugs provided for the purpose. Handle carefully to avoid damage to transformer internal components, enclosure, and finish.

1.8 FIELD CONDITIONS
A. Ambient Temperature: Do not exceed the following maximum temperatures during and after installation of transformers.
 1. Greater than 10 kVA: 104 degrees F maximum.
 2. Less than 10 kVA: 77 degrees F maximum.

1.9 WARRANTY
A. See Section 01 78 00 - Closeout Submittals, for additional warranty requirements.

PART 2 PRODUCTS

2.1 MANUFACTURERS
C. Schneider Electric; Square D Products: www.schneider-electric.us.

2.2 TRANSFORMERS - GENERAL REQUIREMENTS
A. Description: Factory-assembled, dry type transformers for 60 Hz operation designed and manufactured in accordance with NEMA ST 20 and listed, classified, and labeled as suitable for the purpose intended.
B. Unless noted otherwise, transformer ratings indicated are for continuous loading according to IEEE C57.96 under the following service conditions:
 1. Altitude: Less than 3,300 feet.
 2. Ambient Temperature:
 a. Greater than 10 kVA: Not exceeding 104 degrees F.
 b. Less than 10 kVA: Not exceeding 77 degrees F.
 3. Ambient Temperature: Not exceeding 86 degrees F average or 104 degrees F maximum measured during any 24 hour period.
C. Core: High grade, non-aging silicon steel with high magnetic permeability and low hysteresis and eddy current losses. Keep magnetic flux densities substantially below saturation point, even at 10 percent primary overvoltage. Tightly clamp core laminations to prevent plate movement and maintain consistent pressure throughout core length.

D. Impregnate core and coil assembly with non-hydroscopic thermo-setting varnish to effectively seal out moisture and other contaminants.

E. Basic Impulse Level: 10 kV.

F. Ground core and coil assembly to enclosure by means of a visible flexible copper grounding strap.

G. Isolate core and coil from enclosure using vibration-absorbing mounts.

H. Nameplate: Include transformer connection data, ratings, wiring diagrams, and overload capacity based on rated winding temperature rise.

2.3 GENERAL PURPOSE TRANSFORMERS

A. Description: Self-cooled, two winding transformers listed and labeled as complying with UL 506 or UL 1561; ratings as indicated on the drawings.

B. Primary Voltage: 480 volts delta, 3 phase.

C. Secondary Voltage: 208Y/120 volts, 3 phase.

D. Insulation System and Allowable Average Winding Temperature Rise:
 1. 15 kVA and Larger: Class 220 degrees C insulation system with 115 degrees C average winding temperature rise.

E. Coil Conductors: Continuous aluminum windings with terminations brazed or welded.

F. Winding Taps:
 1. 15 kVA through 300 kVA: Two 2.5 percent full capacity primary taps above and four 2.5 percent full capacity primary taps below rated voltage.
 2. 500 kVA and Larger: Two 2.5 percent full capacity primary taps above and two 2.5 percent full capacity primary taps below rated voltage.

G. Energy Efficiency: Comply with 10 CFR 431, Subpart K.
 1. Test efficiency according to NEMA TP 2.
 2. Label transformer according to NEMA TP 3.

H. Sound Levels: Standard sound levels complying with NEMA ST 20.

I. Mounting Provisions:
 1. 15 kVA through 75 kVA: Suitable for wall, floor, or trapeze mounting.
 2. Larger than 75 kVA: Suitable for floor mounting.

J. Transformer Enclosure: Comply with NEMA ST 20.
 1. Environment Type per NEMA 250: Unless otherwise indicated, as specified for the following installation locations:
 2. Construction: Steel.
 a. Less than 15 kVA: Totally enclosed, non-ventilated.
 b. 15 kVA and Larger: Ventilated.
 3. Finish: Manufacturer's standard grey, suitable for outdoor installations.
 4. Provide lifting eyes or brackets.
PART 3 EXECUTION

3.1 EXAMINATION
A. Verify that field measurements are as indicated.
B. Verify that suitable support frames and anchors are installed where required and that mounting surfaces are ready to receive transformers.
C. Perform pre-installation tests and inspections on transformers per manufacturer's instructions and as specified in NECA 409. Correct deficiencies prior to installation.
D. Verify that conditions are satisfactory for installation prior to starting work.

3.2 INSTALLATION
A. Perform work in accordance with NECA 1 (general workmanship).
B. Install products in accordance with manufacturer's instructions.
C. Install transformers in accordance with NECA 409 and IEEE C57.94.
D. Use flexible conduit, under the provisions of Section 26 05 34, 2 feet minimum length, for connections to transformer case. Make conduit connections to side panel of enclosure.
E. Arrange equipment to provide minimum clearances as specified on transformer nameplate and in accordance with manufacturer's instructions and NFPA 70.
F. Mount floor-mounted transformers on properly sized 3 inch high concrete pad constructed in accordance with Section 03 30 00.
G. Mount floor-mounted transformers using vibration isolators suitable for isolating the transformer noise from the building structure.
H. Mount trapeze-mounted transformers as indicated.
I. Provide grounding and bonding in accordance with Section 26 05 26.
J. Remove shipping braces and adjust bolts that attach the core and coil mounting bracket to the enclosure according to manufacturer's recommendations in order to reduce audible noise transmission.
K. Where not factory-installed, install lugs sized as required for termination of conductors as indicated.

3.3 FIELD QUALITY CONTROL
A. See Section 01 40 00 - Quality Requirements, for additional requirements.
B. Inspect and test in accordance with NETA ATS, except Section 4.

3.4 ADJUSTING
A. Measure primary and secondary voltages and make appropriate tap adjustments.
B. Adjust tightness of mechanical and electrical connections to manufacturer's recommended torque settings.

3.5 CLEANING
A. Clean dirt and debris from transformer components according to manufacturer’s instructions.
B. Repair scratched or marred exterior surfaces to match original factory finish.

END OF SECTION
SECTION 26 24 13
SWITCHBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Service and distribution switchboards rated 600 V and less.
 2. Transient voltage suppression devices.
 3. Disconnecting and overcurrent protective devices.
 4. Instrumentation.
 5. Control power.
 6. Accessory components and features.
 7. Identification.
 8. Mimic bus.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of switchboard, overcurrent protective device, transient voltage suppression device, ground-fault protector, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
B. Shop Drawings: For each switchboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 5. Include descriptive documentation of optional barriers specified for electrical insulation and isolation.
 6. Detail utility company's metering provisions with indication of approval by utility company.
 7. Include evidence of NRTL listing for series rating of installed devices.
 8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 9. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.
10. Include diagram and details of proposed mimic bus.
11. Include schematic and wiring diagrams for power, signal, and control wiring.
C. Samples: Representative portion of mimic bus with specified material and finish, for color selection.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified installer
B. Seismic Qualification Certificates: Submit certification that switchboards, overcurrent protective devices, accessories, and components will withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems." Include the following:
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
C. Field Quality-Control Reports:
 1. Test procedures used.
 2. Test results that comply with requirements.
 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Routine maintenance requirements for switchboards and all installed components.
 2. Manufacturer’s written instructions for testing and adjusting overcurrent protective devices.
 3. Time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Potential Transformer Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 2. Control-Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 3. Fuses and Fusible Devices for Fused Circuit Breakers: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 4. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 5. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 6. Indicating Lights: Equal to 10 percent of quantity installed for each size and type, but no fewer than one of each size and type.
1.7 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.

B. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

C. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

D. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

F. Comply with NEMA PB 2.

G. Comply with NFPA 70.

H. Comply with UL 891.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path.

B. Remove loose packing and flammable materials from inside switchboards.

C. See "Testing and Inspecting" Article in the Evaluations for guidance on which option to select in paragraph below.

D. Handle and prepare switchboards for installation according to NEMA PB 2.1.

1.9 PROJECT CONDITIONS

A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.

B. Environmental Limitations:
 1. Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

C. Service Conditions: NEMA PB 2, usual service conditions, as follows:
 1. Ambient temperatures within limits specified.
 2. Altitude not exceeding 6600 feet.

D. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Architect or Owner no fewer than seven 7 days in advance of proposed interruption of electric service.
 2. Indicate method of providing temporary electric service.
3. Do not proceed with interruption of electric service without Architect's or Owner's written permission.
4. Comply with NFPA 70E.

1.10 COORDINATION
A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.11 WARRANTY
A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 1. Warranty Period: Five 5 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings:
 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 2. Siemens Energy & Automation, Inc.
 3. Square D; a brand of Schneider Electric.
C. Front-Connected, Front-Accessible Switchboards:
 1. Main Devices: Panel mounted.
 3. Sections front aligned.
D. Nominal System Voltage: 480Y/277 V 3phase 4wire
E. Main-Bus Continuous: 2000A.
F. Seismic Requirements: Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems."
G. Indoor Enclosures: Steel, NEMA 250, Type 1.
H. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.
I. Utility Metering Compartment: Fabricated, barrier compartment and section complying with utility company's requirements; hinged sealed door; buses provisioned for mounting utility company's current transformers and potential transformers or potential taps as required by utility company. If separate vertical section is required for utility metering, match and align with basic switchboard. Provide service entrance label and necessary applicable service entrance features.
J. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.

K. Removable, Hinged Rear Doors and Compartment Covers: Secured by standard bolts, for access to rear interior of switchboard.

L. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.

M. Pull Box on Top of Switchboard:
 1. Adequate ventilation to maintain temperature in pull box within same limits as switchboard.
 2. Set back from front to clear circuit-breaker removal mechanism.
 3. Removable covers shall form top, front, and sides. Top covers at rear shall be easily removable for drilling and cutting.
 4. Bottom shall be insulating, fire-resistive material with separate holes for cable drops into switchboard.
 5. Cable supports shall be arranged to facilitate cabling and adequate to support cables indicated, including those for future installation.

N. Buses and Connections: Three phase, four wire unless otherwise indicated.
 1. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent conductivity, with tin-plated aluminum or copper feeder circuit-breaker line connections.
 4. Load Terminals: Insulated, rigidly braced, runback bus extensions, of same material as through buses, equipped with mechanical connectors for outgoing circuit conductors. Provide load terminals for future circuit-breaker positions at full-ampere rating of circuit-breaker position.
 5. Ground Bus: Minimum-size required by UL 891, hard-drawn copper of 98 percent conductivity, equipped with mechanical connectors for feeder and branch-circuit ground conductors. For busway feeders, extend insulated equipment grounding cable to busway ground connection and support cable at intervals in vertical run.
 6. Main Phase Buses and Equipment Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 7. Neutral Buses: 50 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.
 8. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.

O. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.

P. Bus-Bar Insulation: Factory-applied, flame-retardant, tape wrapping of individual bus bars or flame-retardant, spray-applied insulation. Minimum insulation temperature rating of 105 deg C.

Q. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components including instruments and instrument transformers.
2.2 TRANSIENT VOLTAGE SUPPRESSION DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

B. Retain option in first paragraph below if manufacturer's name and model number are indicated in schedules or plans on Drawings; delete option and insert manufacturer's name and model number if not included on Drawings.

C. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
2. Siemens Energy & Automation, Inc.
3. Square D; a brand of Schneider Electric.

D. Surge Protection Device Description: IEEE C62.41-compliant, integrally mounted, bolt-on, solid-state, parallel-connected type, with sine-wave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the switchboard short-circuit rating, and with the following features and accessories:

1. Fuses, rated at 200-kA interrupting capacity.
2. Fabrication using bolted compression lugs for internal wiring.
3. Integral disconnect switch.
4. Redundant suppression circuits.
5. Redundant replaceable modules.
6. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
7. LED indicator lights for power and protection status.
8. Audible alarm, with silencing switch, to indicate when protection has failed.
9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of system operation. Contacts shall reverse position on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
10. Four-digit, transient-event counter set to totalize transient surges.

E. Peak Single-Impulse Surge Current Rating: 160 kA per mode/320 kA per phase

F. Retain first paragraph below for switchboards located at or near Category C locations.

G. Withstand Capabilities: 12,000 IEEE C62.41, Category C3 (10 kA), 8-by-20-mic.sec. surges with less than 5 percent change in clamping voltage.

H. Protection modes and UL 1449 SVR for grounded wye circuits with 480Y/277-V, three-phase, four-wire circuits shall be as follows:

1. Line to Neutral: 800 V for 480Y/277
2. Line to Ground: 800 V for 480Y/277
3. Neutral to Ground: 800 V for 480Y/277

2.3 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.

3. Electronic trip circuit breakers with rms sensing: field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long- and short-time time adjustments.
 d. Ground-fault pickup level, time delay, and I^2t response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.

5. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker; trip activation on fuse opening or on opening of fuse compartment door.

6. GFCI Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

8. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 e. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.
 f. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 75 percent of rated voltage.
 g. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.

B. Insulated-Case Circuit Breaker (ICCB): 80 percent rated, sealed, insulated-case power circuit breaker with interrupting capacity rating to meet available fault current.

1. Fixed circuit-breaker mounting.

2. Two-step, stored-energy closing.

3. Standard function, microprocessor-based trip units with interchangeable rating plug, trip indicators, and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time time adjustments.
 c. Ground-fault pickup level, time delay, and I^2t response.

4. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function.

5. Remote trip indication and control.

2.4 INSTRUMENTATION

A. Instrument Transformers: IEEE C57.13, NEMA EI 21.1, and the following:
1. Potential Transformers: IEEE C57.13; 120 V, 60 Hz, single secondary; disconnecting type with integral fuse mountings. Burden and accuracy shall be consistent with connected metering and relay devices.

2. Current Transformers: IEEE C57.13; 5 A, 60 Hz, secondary; wound type; single secondary winding and secondary shorting device. Burden and accuracy shall be consistent with connected metering and relay devices.

3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kVA.

B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:

1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 a. Phase Currents, Each Phase: Plus or minus 1 percent.
 b. Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent.
 c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent.
 d. Megawatts: Plus or minus 2 percent.
 e. Megavars: Plus or minus 2 percent.
 f. Power Factor: Plus or minus 2 percent.
 g. Frequency: Plus or minus 0.5 percent.
 h. Accumulated Energy, Megawatt Hours: Plus or minus 2 percent; accumulated values unaffected by power outages up to 72 hours.
 i. Megawatt Demand: Plus or minus 2 percent; demand interval programmable from five to 60 minutes.
 j. Contact devices to operate remote impulse-totalizing demand meter.

2. Mounting: Display and control unit flush or semi flush mounted in instrument compartment door.

2.5 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from switchboard. Include relay and meter test plugs suitable for testing switchboard meters and switchboard class relays.

D. Spare-Fuse Cabinet: Suitably identified, wall-mounted, lockable, compartmented steel box or cabinet. Arrange for wall mounting.

2.6 IDENTIFICATION

A. Mimic Bus: Entire single-line switchboard bus work, as depicted on factory record drawing, on a photoengraved nameplate.

1. Nameplate: At least 0.032-inch thick anodized aluminum, located at eye level on front cover of the switchboard incoming service section.
B. Mimic Bus: Entire single-line switchboard bus work, as depicted on factory record drawing, on an engraved laminated-plastic (Gravoply) nameplate.
 1. Nameplate: At least 0.0625-inch thick laminated plastic (Gravoply), located at eye level on front cover of the switchboard incoming service section.

C. Mimic Bus: Continuously integrated mimic bus factory applied to front of switchboard. Arrange in single-line diagram format, using symbols and letter designations consistent with final mimic-bus diagram.

D. Coordinate mimic-bus segments with devices in switchboard sections to which they are applied. Produce a concise visual presentation of principal switchboard components and connections.

E. Presentation Media: Painted graphics in color contrasting with background color to represent bus and components, complete with lettered designations.

F. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Receive, inspect, handle, and store switchboards according to NEMA PB 2.1.
 B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.
 C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work.
 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Install switchboards and accessories according to NEMA PB 2.1.
 B. Equipment Mounting: Install switchboards on concrete base, 4-inch nominal thickness. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."
 1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to switchboards.
 C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from switchboard units and components.
 D. Comply with mounting and anchoring requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."
 E. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.
 F. Install filler plates in unused spaces of panel-mounted sections.
 G. Install overcurrent protective devices, transient voltage suppression devices, and instrumentation.
1. Set field-adjustable switches and circuit-breaker trip ranges.

H. Install spare-fuse cabinet.
I. Comply with NECA 1.

3.3 CONNECTIONS
A. Comply with requirements for terminating feeder bus specified in Section 262500 "Enclosed Bus Assemblies." Drawings indicate general arrangement of bus, fittings, and specialties.
B. Comply with requirements for terminating cable trays specified in Section 260536 "Cable Trays for Electrical Systems." Drawings indicate general arrangement of cable trays, fittings, and specialties.

3.4 IDENTIFICATION
A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL
A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
C. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
D. Acceptance Testing Preparation:
 1. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.
E. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
4. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

F. Switchboard will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING
A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573.16 "Overcurrent Protective Device Coordination Study."

3.7 PROTECTION
A. Temporary Heating: Apply temporary heat, to maintain temperature according to manufacturer's written instructions, until switchboard is ready to be energized and placed into service.

3.8 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES
 A. Power distribution panelboards.
 B. Lighting and appliance panelboards.
 C. Overcurrent protective devices for panelboards.

1.02 RELATED REQUIREMENTS
 A. Division 01 - General Requirements: Project administrative and procedural requirements.
 B. Division 02 - Existing Conditions: Demolition, cleaning and disposal requirements, cutting and patching requirements, and repairs.
 C. NA.
 D. Section 26 0005 - Basic Electrical Requirements.
 E. Section 26 0526 - Grounding and Bonding for Electrical Systems.
 F. Section 26 0529 - Hangers and Supports for Electrical Systems.
 G. Section 26 0553 - Identification for Electrical Systems: Identification products and requirements.
 H. Section 26 0573 - Power System Studies: Additional criteria for the selection and adjustment of equipment and associated protective devices specified in this section.
 I. Section 26 2200 - Low-Voltage Transformers: Small power centers with integral primary breaker, transformer, and panelboard.
 J. Section 26 4300 - Surge Protective Devices.

1.03 REFERENCE STANDARDS
 A. FS W-C-375 - Circuit Breakers, Molded Case; Branch Circuit and Service; Federal Specification; Revision E, 2013.
 B. NECA 1 - Standard for Good Workmanship in Electrical Construction; 2010.
 C. NECA 407 - Standard for Installing and Maintaining Panelboards; 2009.
 D. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum); 2014.
 E. NEMA KS 1 - Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum); 2013.
 F. NEMA PB 1 - Panelboards; 2011.
 G. NEMA PB 1.1 - General Instructions for Proper Installation, Operation and Maintenance of Panelboards Rated 600 Volts or Less; 2013.
 I. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
 J. UL 50 - Enclosures for Electrical Equipment, Non-Environmental Considerations; Current Edition, Including All Revisions.
 L. UL 67 - Panelboards; Current Edition, Including All Revisions.
1.04 ADMINISTRATIVE REQUIREMENTS
 A. Coordination:
 1. Coordinate the work with other trades to avoid placement of ductwork, piping, equipment, or other potential obstructions within the dedicated equipment spaces and working clearances for electrical equipment required by NFPA 70.
 2. Coordinate arrangement of electrical equipment with the dimensions and clearance requirements of the actual equipment to be installed.
 3. Coordinate the work with other trades to provide walls suitable for installation of flush-mounted panelboards where indicated.
 4. Verify with manufacturer that conductor terminations are suitable for use with the conductors to be installed.
 5. Notify Strategic Energy Solutions, Inc. of any conflicts with or deviations from the contract documents. Obtain direction before proceeding with work.

1.05 SUBMITTALS
 A. Contractor shall provide submittals for equipment listed herein. Refer to Division 01 - General Requirements for submittal procedures.
 B. Shop Drawings: Indicate outline and support point dimensions, voltage, main bus ampacity, overcurrent protective device arrangement and sizes, short circuit current ratings, conduit entry locations, conductor terminal information, and installed features and accessories.
 C. Manufacturer's Installation Instructions: Indicate application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, and installation of product.
 D. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
 1. Panelboard Keys: Two of each different key.

PART 2 PRODUCTS
2.01 MANUFACTURERS
 B. Schneider Electric; Square D Products: www.schneider-electric.us.
 D. Source Limitations: Furnish panelboards and associated components produced by the same manufacturer as the other electrical distribution equipment used for this project and obtained from a single supplier.

2.02 PANELBOARDS - GENERAL REQUIREMENTS
 A. Provide products listed, classified, and labeled as suitable for the purpose intended.
 B. Unless otherwise indicated, provide products suitable for continuous operation under the following service conditions:
 1. Altitude: Less than 6,600 feet.
 2. Ambient Temperature:
 a. Panelboards Containing Circuit Breakers: Between 23 degrees F and 104 degrees F.
 C. Short Circuit Current Rating:
 1. Provide panelboards with listed short circuit current rating as indicated on the drawings.
 D. Panelboards Used for Service Entrance: Listed and labeled as suitable for use as service equipment according to UL 869A.
 E. Mains: Configure for top or bottom incoming feed as indicated or as required for the installation.
 F. Branch Overcurrent Protective Devices: Replaceable without disturbing adjacent devices.
 G. Bussing: Sized in accordance with UL 67 temperature rise requirements.
1. Provide solidly bonded equipment ground bus in each panelboard, with a suitable lug for each feeder and branch circuit equipment grounding conductor.

H. Conductor Terminations: Suitable for use with the conductors to be installed.

I. Enclosures: Comply with NEMA 250, and list and label as complying with UL 50 and UL 50E.
 1. Environment Type per NEMA 250: Unless otherwise indicated, as specified for the following installation locations:
 a. Indoor Clean, Dry Locations: Type 1.
 b. Outdoor Locations: Type 4X, stainless steel.
 2. Boxes: Galvanized steel unless otherwise indicated.
 a. Provide wiring gutters sized to accommodate the conductors to be installed.
 3. Fronts:
 a. Fronts for Surface-Mounted Enclosures: Same dimensions as boxes.
 b. Fronts for Flush-Mounted Enclosures: Overlap boxes on all sides to conceal rough opening.
 c. Finish for Painted Steel Fronts: Manufacturer's standard grey unless otherwise indicated.
 4. Lockable Doors: All locks keyed alike unless otherwise indicated.

J. Future Provisions: Prepare all unused spaces for future installation of devices including bussing, connectors, mounting hardware and all other required provisions.

K. Surge Protective Devices: Where factory-installed, internally mounted surge protective devices are provided in accordance with Section 264300, list and label panelboards as a complete assembly including surge protective device.
 1. Provide Surge Protective Devices internally mounted within all panels which are specified as part of the Emergency distribution power system.

L. Multi-Section Panelboards: Provide enclosures of the same height, with feed-through lugs or sub-feed lugs and feeders as indicated or as required to interconnect sections.

M. Load centers are not acceptable.

2.03 POWER DISTRIBUTION PANELBOARDS

A. Description: Panelboards complying with NEMA PB 1, power and feeder distribution type, circuit breaker type, and listed and labeled as complying with UL 67; ratings, configurations and features as indicated on the drawings.

B. Conductor Terminations:
 1. Main and Neutral Lug Material: Copper, suitable for terminating copper conductors only.
 2. Main and Neutral Lug Type: Mechanical.

C. Bussing:
 1. Phase and Neutral Bus Material: Copper.
 2. Ground Bus Material: Copper.

D. Circuit Breakers:
 1. Provide bolt-on type or plug-in type secured with locking mechanical restraints.

E. Enclosures:
 1. Provide surface-mounted enclosures unless otherwise indicated.
 2. Provide clear plastic circuit directory holder mounted on inside of door.

2.04 LIGHTING AND APPLIANCE PANELBOARDS

A. Description: Panelboards complying with NEMA PB 1, lighting and appliance branch circuit type, circuit breaker type, and listed and labeled as complying with UL 67; ratings, configurations and features as indicated on the drawings.

B. Conductor Terminations:
 1. Main and Neutral Lug Material: Copper, suitable for terminating copper conductors only.
 2. Main and Neutral Lug Type: Mechanical.
C. Bussing:
 2. Phase and Neutral Bus Material: Copper.

D. Circuit Breakers: Thermal magnetic bolt-on type unless otherwise indicated.

E. Enclosures:
 1. Provide surface-mounted or flush-mounted enclosures as indicated.
 2. Provide clear plastic circuit directory holder mounted on inside of door.

2.05 OVERCURRENT PROTECTIVE DEVICES

A. Molded Case Circuit Breakers:
 1. Description: Quick-make, quick-break, over center toggle, trip-free, trip-indicating circuit breakers listed and labeled as complying with UL 489, and complying with FS W-C-375 where applicable; ratings, configurations, and features as indicated on the drawings.

B. Interrupting Capacity:
 1. Provide circuit breakers with interrupting capacity as required to provide the short circuit current rating indicated.
 2. Fully Rated Systems: Provide circuit breakers with interrupting capacity not less than the short circuit current rating indicated.
 3. Conductor Terminations:
 a. Lug Material: Aluminum, suitable for terminating aluminum or copper conductors.

C. Thermal Magnetic Circuit Breakers: For each pole, furnish thermal inverse time tripping element for overload protection and magnetic instantaneous tripping element for short circuit protection.

D. Electronic Trip Circuit Breakers: Furnish solid state, microprocessor-based, true rms sensing trip units.
 1. Provide the following field-adjustable trip response settings:
 a. Long time pickup, adjustable by replacing interchangeable trip unit or by setting dial.
 b. Short time pickup and delay.
 c. Instantaneous pickup.
 d. Ground fault pickup and delay where ground fault protection is indicated.
 2. All circuit breakers rated 1200 amperes or greater shall be Electronic Trip type provided with field-adjustable trip settings as indicated above.

E. Multi-Pole Circuit Breakers: Furnish with common trip for all poles.
 1. Do not use tandem circuit breakers.
 2. Do not use handle ties in lieu of multi-pole circuit breakers.
 3. Provide multi-pole circuit breakers for multi-wire branch circuits as required by NFPA 70.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that the ratings and configurations of the panelboards and associated components are consistent with the indicated requirements.

B. Verify that mounting surfaces are ready to receive panelboards.

C. Verify that conditions are satisfactory for installation prior to starting work.

3.02 INSTALLATION

A. Perform work in accordance with NECA 1 (general workmanship).

B. Install products in accordance with manufacturer's instructions.

C. Install panelboards in accordance with NECA 407 and NEMA PB 1.1.

D. Arrange equipment to provide minimum clearances in accordance with manufacturer's instructions and NFPA 70.
E. Provide required supports in accordance with Section 26 0529.
F. Install panelboards plumb.
G. Install flush-mounted panelboards so that trims fit completely flush to wall with no gaps and rough opening completely covered.
H. Mount panelboards such that the highest position of any operating handle for circuit breakers or switches does not exceed 79 inches above the floor or working platform.
I. Provide minimum of six spare 1 inch trade size conduits out of each flush-mounted panelboard stubbed into accessible space above ceiling and below floor.
J. Provide grounding and bonding in accordance with Section 26 0526.
 1. Terminate branch circuit equipment grounding conductors on solidly bonded equipment ground bus only. Do not terminate on isolated/insulated ground bus.
K. Install all field-installed branch devices, components, and accessories.
L. Set field-adjustable circuit breaker tripping function settings as determined by overcurrent protective device coordination study performed according to Section 26 0573.
M. Set field-adjustable ground fault protection pickup and time delay settings as directed.
N. Provide filler plates to cover unused spaces in panelboards.
O. Provide circuit breaker lock-on devices to prevent unauthorized personnel from de-energizing essential loads as directed. Also provide for the following:
 1. Fire detection and alarm circuits.
 2. Intrusion detection and access control system circuits.
 3. Video surveillance system circuits.
P. Identify panelboards in accordance with Section 26 0553.

3.03 FIELD QUALITY CONTROL
A. Inspect and test in accordance with NETA ATS, except Section 4.
B. Molded Case Circuit Breakers: Perform inspections and tests listed in NETA ATS, Section 7.6.1.1. Tests listed as optional are not required.
C. Test GFCI circuit breakers to verify proper operation.
D. Test AFCI circuit breakers to verify proper operation.
E. Test shunt trips to verify proper operation.
F. Correct deficiencies and replace damaged or defective panelboards or associated components.

3.04 ADJUSTING
A. Adjust tightness of mechanical and electrical connections to manufacturer’s recommended torque settings.
B. Adjust alignment of panelboard fronts.
C. Load Balancing: For each panelboard, rearrange circuits such that the difference between each measured steady state phase load does not exceed 20 percent and adjust circuit directories accordingly. Maintain proper phasing for multi-wire branch circuits.

END OF SECTION